[1] C GREBING, A AL-MASOUDI, S DÖRSCHER et al. Realization of a timescale with an accurate optical lattice clock. Optica, 3, 563-569(2016).
[2] R LE TARGAT, L LORINI, COQ Y LE et al. Experimental realization of an optical second with strontium lattice clocks. Nature Communications, 4, 2109(2013).
[3] E OELKER, R B HUTSON, C J KENNEDY et al. Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks. Nature Photonics, 13, 714-719(2019).
[4] T BOTHWELL, D KEDAR, E OELKER et al. JILA SrI optical lattice clock with uncertainty of 2.0×10-18. Metrologia, 56(2019).
[5] S BLATT, A D LUDLOW, G K CAMPBELL et al. Optical lattice clocks. Physical Review Letters, 100, 140801(2008).
[6] R M GODUN, P B R NISBET-JONES, J M JONES et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Physical Review Letters, 113, 210801(2014).
[7] N HUNTEMANN, B LIPPHARDT, C TAMM et al. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks. Physical Review Letters, 113, 210802(2014).
[8] S KOLKOWITZ, I PIKOVSKI, N LANGELLIER et al. Gravitational wave detection with optical lattice atomic clocks. Physical Review D, 94, 124043(2016).
[9] A DEREVIANKO, M POSPELOV. Hunting for topological dark matter with atomic clocks. Nature Physics, 10, 933-936(2014).
[10] F RIEHLE. Frequency Standards: Basics and Applications, 387-415(2004).
[11] F GUO, W TAN, C H ZHOU et al. A proof-of-concept model of compact and high-performance 87Sr optical lattice clock for space. AIP Advances, 11, 125116(2021).
[12] L LI, J W JI, W REN et al. Automatic compensation of magnetic field for a rubidium space cold atom clock. Chinese Physics B, 25(2016).
[13] 13孔德欢. 可搬运锶光钟性能评估及空间站锶光钟预研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2021. doi: 10.7498/aps.70.20201204KONGD H. Evaluation of the Transportable Strontium Optical Clock and Pre-research of the Optical Clock for Space Station[D]. Xi'an: National Time Service Center, Chinese Academy of Sciences, 2021. (in Chinese). doi: 10.7498/aps.70.20201204
[14] 14任洁, 卢晓同, 王叶兵, 等. 锶原子光钟闭环控制系统的设计与实现[J]. 光学 精密工程, 2018, 26(10): 2546-2554. doi: 10.3788/OPE.20182610.2546RENJ, LUX T, WANGY B, et al. Design and realization of an auto-control system for the closed-loop operation of a strontium atomic clock[J]. Opt. Precision Eng., 2018, 26(10): 2546-2554. (in Chinese). doi: 10.3788/OPE.20182610.2546
[15] M BOYD. M(2002).
[16] L LIU, D S LÜ, W B CHEN et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nature Communications, 9, 2760(2018).
[17] Z X LIANG, Z D ZHANG, W M LIU. Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Physical Review Letters, 94(2005).
[18] C CHIN, R GRIMM, P JULIENNE et al. Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82, 1225-1286(2010).
[19] A C JI, W M LIU, J L SONG et al. Dynamical creation of fractionalized vortices and vortex lattices. Physical Review Letters, 101(2008).
[20] A C JI, Q SUN, X C XIE et al. Josephson effect for photons in two weakly linked microcavities. Physical Review Letters, 102(2009).