• Journal of Advanced Dielectrics
  • Vol. 11, Issue 6, 2150026 (2021)
Parambir Singh Malhi1, Anupinder Singh2, Mandeep Singh2, Sachin Kumar1, Shubhpreet Kaur2, Mehak Arora2, and Ashwani Kumar Sood1、*
Author Affiliations
  • 1Department of Chemistry, UGC Centre for Advanced Studies II, Faculty of Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
  • 2Multifunctional Materials Laboratory, Department of Physics, Faculty of Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
  • show less
    DOI: 10.1142/S2010135X21500260 Cite this Article
    Parambir Singh Malhi, Anupinder Singh, Mandeep Singh, Sachin Kumar, Shubhpreet Kaur, Mehak Arora, Ashwani Kumar Sood. Enhanced magneto-dielectric response in La-doped Co2U hexaferrite[J]. Journal of Advanced Dielectrics, 2021, 11(6): 2150026 Copy Citation Text show less
    References

    [1] DishovskiN.,NedkovI.,RazkazovI. andPetkovA.,Hexaferrite contribution to microwave absorbers characteristics,IEEE Trans. Magn.30,969(1994),https://doi.org/10.1109/20.312461. https://doi.org/10.1109/20.312461

    [2] PullarR. C. andBhattacharyaA. K.,The synthesis and characterisation of Co2X (Ba2Co2Fe28O46) and Co2U (Ba4Co2Fe36O60) ferrite fibres, manufactured from a sol-gel process,J. Mater. Sci.36,4805(2001),https://doi.org/10.1023/A:1017947625940. https://doi.org/10.1023/A:1017947625940

    [3] LisjakD. andDrofenikM.,Synthesis and characterization of Zn2U (Ba4Zn2Fe36O60) hexaferrite powder,J. Appl. Phys.93,8011(2003),https://doi.org/10.1063/1.1540159. https://doi.org/10.1063/1.1540159

    [4] ShannigrahiS. R.,AuW. Q.,Suresh KumarV.,LiuL.,YangZ. H.,ChengC.,TanC. K. I. andRamanujanR. V.,Synthesis and electromagnetic properties of U-type hexaferrites Ba4B2Fe36O60 (B: Co, Ni, Cu),J. Magn. Magn. Mater.325,63(2013),https://doi.org/10.1016/j.jmmm.2012.08.019. https://doi.org/10.1016/j.jmmm.2012.08.019

    [5] KamishimaK.,TajimaR.,WatanabeK.,KakizakiK.,FujimoriA.,SakaiM.,WatanabeK. andAbeH.,Crystallographic and magnetic properties of Cu2U-type hexaferrite,J. Magn. Magn. Mater.375,54(2015),https://doi.org/10.1016/j.jmmm.2014.09.055. https://doi.org/10.1016/j.jmmm.2014.09.055

    [6] MeenaR. S.,BhattachryaS. andChatterjeeR.,Complex permittivity, permeability and microwave absorbing studies of (Co2−xMnx) U-type hexaferrite for X-band (8.2–12.4 GHz) frequencies,Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol.171,133(2010),https://doi.org/10.1016/j.mseb.2010.03.086. https://doi.org/10.1016/j.mseb.2010.03.086

    [7] MeenaR. S.,BhattachryaS. andChatterjeeR.,Complex permittivity, permeability and wide band microwave absorbing property of La3+ substituted U-type hexaferrite,J. Magn. Magn. Mater.322,1923(2010),https://doi.org/10.1016/j.jmmm.2010.01.008. https://doi.org/10.1016/j.jmmm.2010.01.008

    [8] MeenaR. S.,BhattachryaS. andChatterjeeR.,Complex permittivity, permeability and microwave absorbing properties of (Mn2−xZnx) U-type hexaferrite,J. Magn. Magn. Mater.322,2908(2010),https://doi.org/10.1016/j.jmmm.2010.05.004. https://doi.org/10.1016/j.jmmm.2010.05.004

    [9] KumarS.,MeenaR. S. andChatterjeeR.,Microwave absorption studies of Cr-doped Co–U type hexaferrites over 2–18 GHz frequency range,J. Magn. Magn. Mater.418,194(2016),https://doi.org/10.1016/j.jmmm.2016.02.084. https://doi.org/10.1016/j.jmmm.2016.02.084

    [10] LisjakD.,MakovecD. andDrofenikM.,Formation of U-type hexaferrites,J. Mater. Res.19,2462(2004),https://doi.org/10.1557/JMR.2004.0317. https://doi.org/10.1557/JMR.2004.0317

    [11] LisjakD.,BregarV. B.,ZnidarsicA. andDrofenikM.,Microwave behaviour of ferrite composites,J. Optoelectron. Adv. Mater.8,60(2006).

    [12] LisjakD. andDrofenikM.,The thermal stability range and magnetic properties of U-type hexaferrites,J. Magn. Magn. Mater.272–276,E1817(2004),https://doi.org/10.1016/j.jmmm.2003.12.879. https://doi.org/10.1016/j.jmmm.2003.12.879

    [13] LisjakD.,McGuinessP. andDrofenikM.,Thermal instability of Co-substituted barium hexaferrites with U-type structure,J. Mater. Res.21,420(2006),https://doi.org/10.1557/jmr.2006.0048. https://doi.org/10.1557/jmr.2006.0048

    [14] D. Lisjak and M. Drofenik, Synthesis and characterization of Zn2U (Ba4Zn2Fe36O60) hexaferrite powder, Journal of applied Physics, (2003). https://doi.org/10.1063/1.1540159.

    [15] DimriM. C.,KashyapS. C. andDubeD. C.,Complex permittivity and permeability of Co2U (Ba4Co2Fe36O60) hexaferrite bulk and composite thick films at radio and microwave frequencies,IEEE Trans. Magn.42,3635(2006),https://doi.org/10.1109/TMAG.2006. 882378. https://doi.org/10.1109/TMAG.2006. 882378

    [16] Chandra DimriM.,KhanduriH.,KooskoraH.,HeinmaaI.,JoonE. andSternR.,Magnetic properties and 57Fe NMR studies of U-type hexaferrites,J. Magn. Magn. Mater.323,2210(2011),https://doi.org/10.1016/j.jmmm.2011.03.033. https://doi.org/10.1016/j.jmmm.2011.03.033

    [17] KerecmanA. J. andAuCoinT. R.,Ferromagnetic resonance in Ba4Zn2Fe36O60 (ZnU) and Mn-substituted ZnU single crystals,J. Appl. Phys.40,1416(1969).

    [18] ChenJ.,LiuY.,WangY.,YinQ.,LiuQ.,WuC. andZhangH.,Magnetic and microwave properties of polycrystalline U-type hexaferrite,J. Magn. Magn. Mater.496,165948(2020),https://doi.org/10.1016/j.jmmm.2019.165948. https://doi.org/10.1016/j.jmmm.2019.165948

    [19] HondaT.,HiraokaY.,WakabayashiY. andKimuraT.,Refinement of crystal structure of a magnetoelectric U-type hexaferrite Sr4Co2Fe36O60,J. Phys. Soc. Jpn.82,025003(2013).

    [20] OkumuraK.,IshikuraT.,SodaM.,AsakaT.,NakamuraH.,WakabayashiY.,KimuraT.,OkumuraK.,IshikuraT.,SodaM.,AsakaT.,NakamuraH. andWakabayashiY.,Magnetism and magnetoelectricity of a U-type hexaferrite Sr4Co2Fe36O60,Appl. Phys. Lett.98,212504(2014),https://doi.org/10.1063/1.3593371. https://doi.org/10.1063/1.3593371

    [21] OunnunkadS.,Improving magnetic properties of barium hexaferrites by La or Pr substitution,Solid State Commun.138,472(2006),https://doi.org/10.1016/j.ssc.2006.03.020. https://doi.org/10.1016/j.ssc.2006.03.020

    [22] JiaJ.,LiuC.,MaN.,HanG.,WengW. andDuP.,Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption,Sci. Technol. Adv. Mater.14,045002(2013),https://doi.org/10.1088/1468-6996/14/4/ 045002. https://doi.org/10.1088/1468-6996/14/4/ 045002

    [23] XuJ. J.,YangC. M.,ZouH. F.,SongY. H.,GaoG. M.,AnB. C. andGanS. C.,Electromagnetic and microwave absorbing properties of Co2Z-type hexaferrites doped with La3+,J. Magn. Magn. Mater.321,3231(2009),https://doi.org/10.1016/j.jmmm.2009.05.039. https://doi.org/10.1016/j.jmmm.2009.05.039

    [24] LiH.,ZouH.,YuanL.,XuJ.,GanS.,MengJ. andHongG.,Preparation and characterization of W-type hexaferrite doped with La3+,J. Rare Earths25,590(2007).

    [25] KumarS. andChatterjeeR.,Complex permittivity, permeability, magnetic and microwave absorbing properties of Bi3+ substituted U-type hexaferrite,J. Magn. Magn. Mater.448,88(2018),https://doi.org/10.1016/j.jmmm.2017.06.123. https://doi.org/10.1016/j.jmmm.2017.06.123

    [26] MahajanS.,ThakurO. P.,BhattacharyaD. K. andSreenivasK.,Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics,J. Phys. D, Appl. Phys.42,065413(2009),https://doi.org/10.1088/0022-3727/42/6/065413. https://doi.org/10.1088/0022-3727/42/6/065413

    [27] TakenakaT.,NagataH. andHirumaY.,Current developments and prospective of lead-free piezoelectric ceramics,Jpn. J. Appl. Phys.47,3787(2008),https://doi.org/10.1143/JJAP.47.3787. https://doi.org/10.1143/JJAP.47.3787

    [28] Priyanka andJhaA. K.,Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy,Bull. Mater. Sci.36,135(2013),https://doi.org/10.1007/s12034-013-0420-0. https://doi.org/10.1007/s12034-013-0420-0

    [29] SenS. andChoudharyR. N.,Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics,Mater. Chem. Phys.87,256(2003).

    [30] KaushalA.,OlheroS. M.,SinghB.,FaggD. P.,BdikinI. andFerreiraJ. M. F.,Impedance analysis of 0.5Ba(Zr0.2Ti0.8)O3–0.5-(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules,Ceram. Int.40,10593(2014),https://doi.org/10.1016/j.ceramint.2014.03. 038. https://doi.org/10.1016/j.ceramint.2014.03. 038

    [31] BadapandaT.,SarangiS.,BeheraB. andAnwarS.,Structural and impedance spectroscopy study of samarium modified barium zirconium titanate ceramic prepared by mechanochemical route,Curr. Appl. Phys.14,1192(2014),https://doi.org/10.1016/j.cap.2014.06. 007. https://doi.org/10.1016/j.cap.2014.06. 007

    [32] RafiqM. A.,RafiqM. N. andVenkata SaravananK.,Dielectric and impedance spectroscopic studies of lead-free barium-calcium- zirconium-titanium oxide ceramics,Ceram. Int.41,11436(2015),https://doi.org/10.1016/j.ceramint.2015.05.107. https://doi.org/10.1016/j.ceramint.2015.05.107

    [33] BadapandaT.,CavalcanteL. S.,da LuzJr. G. E.,BatistaN. C.,AnwarS. andLongoE.,Effect of yttrium doping in barium zirconium titanate ceramics: A structural, impedance, modulus spectroscopy study,Metall. Mater. Trans. A, Phys. Metall. Mater. Sci.44,4296(2013),https://doi.org/10.1007/s11661-013-1770-3. https://doi.org/10.1007/s11661-013-1770-3

    [34] MorrisonF. D.,JungD. J. andScottJ. F.,Constant-phase-element (CPE) modeling of ferroelectric random-access memory lead zirconate-titanate (PZT) capacitors,J. Appl. Phys.101,094112(2007),https://doi.org/10.1063/1.2723194. https://doi.org/10.1063/1.2723194

    [35] RanjanR.,KumarR.,BehraB. andChoudharyR. N. P.,Structural and impedance spectroscopic studies of samarium modified lead zirconate titanate ceramics,Physica B404,3709(2009).

    [36] OrtegaN.,KumarA.,BhattacharyaP.,MajumderS. B. andKatiyarR. S.,Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 layered thin films,Phys. Rev. B, Condens. Matter Mater. Phys.77,014111(2008),https://doi.org/10.1103/PhysRevB.77. 014111. https://doi.org/10.1103/PhysRevB.77. 014111

    [37] BergmanR.,General susceptibility functions for relaxations in disordered systems,J. Appl. Phys.88,1356(2000).

    [38] KumarM. andYadavK. L.,Study of dielectric, magnetic, ferroelectric and magnetoelectric properties in the PbMnxTi1−xO3 system at room temperature,J. Phys., Condens. Matter19,242202(2007),https://doi.org/10.1088/0953-8984/19/24/242202. https://doi.org/10.1088/0953-8984/19/24/242202

    [39] MasonP. R.,HastedJ. B. andMooreL.,The use of statistical theory in fitting equations to dielectric dispersion data,Adv. Mol. Relax. Process.6,217(1974),https://doi.org/10.1016/0001-8716(74)80003-9. https://doi.org/10.1016/0001-8716(74)80003-9

    [40] HavriliakS. andNegamiS.,A complex plane representation of dielectric and mechanical relaxation processes in some polymers,Polymer8,161(1967),https://doi.org/10.1016/0032-3861(67)90021-3. https://doi.org/10.1016/0032-3861(67)90021-3

    [41] PalJ.,KumarS.,KaurS.,MalhiP. S.,KumarY.,SinghM. andSinghA.,Study of the magnetic, electrical and magneto-dielectric properties and dielectric relaxation in 0.8BiFeO3−0.2Ba0.8Sr0.2TiO3 solid solution,Solid State Sci.103,106193(2020),https://doi.org/10.1016/j.solidstatesciences.2020.106193. https://doi.org/10.1016/j.solidstatesciences.2020.106193

    [42] PradhanD. K.,BeheraB. andDasP. R.,Studies of dielectric and electrical properties of a new type of complex tungsten bronze electroceramics,J. Mater. Sci., Mater. Electron.23,779(2012).

    [43] PatanayakS.,ChoudharyR. N. P. andDasP. R.,Effect of Gd- substitution on phase transition and conduction mechanism of BiFeO3,J. Mater. Sci., Mater. Electron.24,2767(2013).

    [44] CatalanG.,Magnetocapacitance without magnetoelectric coupling,Appl. Phys. Lett.88,102902(2006),https://doi.org/10.1063/1.2177543. https://doi.org/10.1063/1.2177543

    [45] PalkarV. R.,KundaliyaD. C.,MalikS. K. andBhattacharyaS.,Magnetoelectricity at room temperature in the Bi0.9−xTbxFeO3 system,Phys. Rev. B, Condens. Matter Mater. Phys.69,212102(2004),https://doi.org/10.1103/PhysRevB.69.212102. https://doi.org/10.1103/PhysRevB.69.212102

    [46] KimuraT.,Magnetoelectric hexaferrites,Annu. Rev. Condens. Matter Phys.3,93(2012),https://doi.org/10.1146/annurev-conmatphys-020911-125101. https://doi.org/10.1146/annurev-conmatphys-020911-125101

    [47] KimuraT.,LawesG. andRamirezA. P.,Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures,Phys. Rev. Lett.94,137201(2005),https://doi.org/10.1103/PhysRevLett.94.137201. https://doi.org/10.1103/PhysRevLett.94.137201

    [48] KitagawaY.,HiraokaY.,HondaT.,IshikuraT. andNakamuraH.,Low-field magnetoelectric effect at room temperature,Nature Mater.9,797(2010),https://doi.org/10.1038/nmat2826. https://doi.org/10.1038/nmat2826

    [49] TokunagaY.,KanekoY.,OkuyamaD.,IshiwataS.,ArimaT.,WakimotoS. andKakuraiK.,Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity,Phys. Rev. Lett.105,257201(2010),https://doi.org/10.1103/PhysRevLett.105.257201. https://doi.org/10.1103/PhysRevLett.105.257201

    [50] WangX.et al.,Giant magnetoresistance due to magnetoelectric currents in Sr3Co2Fe24O41 hexaferrites,Appl. Phys. Lett.105,112408(2016),https://doi.org/10.1063/1.4896326. https://doi.org/10.1063/1.4896326

    [51] IzadkhahH.,ZareS.,SomuS. andVittoriaC.,Effects of cobalt substitutions on the magnetoelectric coupling of M-type hexaferrite films,Appl. Phys. Lett.106,142905(2018),https://doi.org/10.1063/1.4916102. https://doi.org/10.1063/1.4916102

    [52] WangL.,WangD.,CaoQ.,ZhengY.,XuanH.,GaoJ. andDuY.,Electric control of magnetism at room temperature,Sci. Rep.2,223(2011).

    Parambir Singh Malhi, Anupinder Singh, Mandeep Singh, Sachin Kumar, Shubhpreet Kaur, Mehak Arora, Ashwani Kumar Sood. Enhanced magneto-dielectric response in La-doped Co2U hexaferrite[J]. Journal of Advanced Dielectrics, 2021, 11(6): 2150026
    Download Citation