• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 056003 (2024)
Ruiqing Sun1, Delong Yang1, Shaohui Zhang1,*, and Qun Hao1,2,*
Author Affiliations
  • 1Beijing Institute of Technology, School of Optics and Photonics, Beijing, China
  • 2Changchun University of Science and Technology, Changchun, China
  • show less
    DOI: 10.1117/1.APN.3.5.056003 Cite this Article Set citation alerts
    Ruiqing Sun, Delong Yang, Shaohui Zhang, Qun Hao, "Hybrid deep-learning and physics-based neural network for programmable illumination computational microscopy," Adv. Photon. Nexus 3, 056003 (2024) Copy Citation Text show less
    References

    [1] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [2] G. Zheng et al. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys., 3, 207-223(2021).

    [3] X. Ou et al. High numerical aperture Fourier ptychography: principle, implementation and characterization. Opt. Express, 23, 3472-3491(2015).

    [4] Y. Shu et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX, 3, 24(2022).

    [5] Y. Fan et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab). PhotoniX, 2, 1-64(2021).

    [6] J. Chung et al. Counting white blood cells from a blood smear using Fourier ptychographic microscopy. PLoS One, 10, e0133489(2015).

    [7] C. Shen et al. Computational aberration correction of VIS-NIR multispectral imaging microscopy based on Fourier ptychography. Opt. Express, 27, 24923-24937(2019).

    [8] J. Sun et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space. Opt. Express, 24, 15765-15781(2016).

    [9] R. Sun et al. Unsupervised adaptive coded illumination Fourier ptychographic microscopy based on a physical neural network. Biomed. Opt. Express, 14, 4205(2023).

    [10] O. Bunk et al. Influence of the overlap parameter on the convergence of the ptycho-graphical iterative engine. Ultramicroscopy, 108, 481-487(2008).

    [11] L. Tian et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomed. Opt. Express, 5, 2376-2389(2014).

    [12] L. Tian et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica, 2, 904-911(2015).

    [13] M. Kellman et al. Data-driven design for Fourier ptychographic microscopy, 1-8(2019).

    [14] F. Wang et al. Phase imaging with an untrained neural network. Light: Sci. Appl., 9, 77(2020).

    [15] Z. Zhang et al. Deep coded exposure: end-to-end co-optimization of flutter shutter and deblurring processing for general motion blur removal. Photonics Res., 11, 1678-1686(2023).

    [16] A. Steva et al. Deep learning-enabled medical computer vision. NPJ Digital Med., 4, 5(2021).

    [17] I. Lauriola, A. Lavelli, F. Aiolli. An introduction to deep learning in natural language processing: models, techniques, and tools. Neurocomputing, 470, 443-456(2022).

    [18] S. Feng et al. Generalized framework for non-sinusoidal fringe analysis using deep learning. Photonics Res., 9, 1084-1098(2021).

    [19] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    [20] L. Bouchama et al. Fourier ptychographic microscopy image enhancement with bi-modal deep learning. Biomed. Opt. Express, 14, 3172(2023).

    [21] Y. Rivenson et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [22] Z. B. Ren, Z. M. Xu, E. Y. Lam. Learning-based nonparametric autofocusing for digital holography. Optica, 5, 337-344(2018).

    [23] M. Lyu et al. Learning-based lensless imaging through optically thick scattering media. Adv. Photonics, 1, 036002(2019).

    [24] V. Lempitsky, A. Vedaldi, D. Ulyanov. Deep image prior, 9446-9454(2018).

    [25] T. Nguyen et al. Deep learning approach for Fourier ptychography microscopy. Opt Express, 26, 26470(2018).

    [26] Y. F. Cheng et al. Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy, 27, No. 2, 644(2019).

    [27] Z. Zhang et al. Sparse phase retrieval using a physics-informed neural network for Fourier ptychographic microscopy. Opt. Lett., 47, 4909(2022).

    [28] C. Saharia et al. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell., 45, 4713-4726(2022).

    [29] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci., 9351, 234-241(2015).

    [30] F. Isensee et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods, 18, 203-211(2020).

    [31] C. Du et al. On uni-modal feature learning in supervised multi-modal learning(2023).

    [32] A. Baroni et al. Angularly resolved polarization microscopy for birefringent materials with Fourier ptychography. Opt. Express, 30, 38984-38994(2022).

    [33] D. Yang et al. Fourier ptychography multi-parameter neural network with composite physical priori optimization. Biomed. Opt. Express, 13, 2739-2753(2022).

    Ruiqing Sun, Delong Yang, Shaohui Zhang, Qun Hao, "Hybrid deep-learning and physics-based neural network for programmable illumination computational microscopy," Adv. Photon. Nexus 3, 056003 (2024)
    Download Citation