[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299-303.
[2] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J Alloys Compd, 2011, 509(20): 6043-6048.
[3] TSAI M H, YEH J W. High-entropy alloys: A critical review[J]. Mater Res Lett, 2014, 2(3): 107-123.
[4] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. J Mater Sci, 2012, 47(9): 4062-4074.
[5] BRAIC V, VLADESCU A, BALACEANU M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings[J]. Surf Coat Technol, 2012, 211: 117-121.
[6] ZHAO Y J, QIAO J W, MA S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy[J]. Mater Des, 2016, 96: 10-15.
[7] NONG Z S, ZHU J C, ZHAO R D. Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys[J]. Intermetallics, 2017, 86: 134-146.
[8] GILD J, BRAUN J, KAUFMANN K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2[J]. J Materiomics, 2019, 5(3): 337-343.
[9] QIN Y, LIU J X, LI F, et al. A high entropy silicide by reactive spark plasma sintering[J]. J Adv Ceram, 2019, 8(1): 13.
[10] CASTLE E, CSANáDI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Sci Rep-UK, 2018, 8(1): 1-12.
[11] CHEN H, XIANG H, DAI F Z, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. J Mater Sci Technol, 2019, 35(8): 1700-1705.
[12] CHICARDI E, GARC?A GARRIDO C, GOTOR FJ. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route[J]. Ceram Int, 2019, 45(17): 21858-21863.
[13] DUSZA J, ?VEC P, GIRMAN V, et al. Microstructure of (Hf— Ta—Zr—Nb)C high-entropy carbide at micro and nano/atomic level[J]. J Eur Ceram Soc, 2018, 38(12): 4303-4307.
[14] HAN X, GIRMAN V, SEDLAK R, et al. Improved creep resistance of high entropy transition metal carbides[J]. J Eur Ceram Soc, 2020, 40(7): 2709-2715.
[15] LU K, LIU J X, WEI X F, et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase[J]. J Eur Ceram Soc, 2020, 40(5): 1839-1847.
[16] SARKER P, HARRINGTON T, TOHER C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors[J]. Nat Commun, 2018, 9(1): 4980.
[17] WANG K, CHEN L, XU C, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. J Mater Sci Technol, 2020, 39: 99-105.
[18] YAN X, CONSTANTIN L, LU Y, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. J Am Ceram Soc, 2018, 101(10): 4486-4491.
[19] ZHOU J, ZHANG J, ZHANG F, et al. High-entropy carbide: A novel class of multicomponent ceramics[J]. Ceram Int, 2018, 44(17): 22014-22018.
[20] YE B, WEN T, LIU D, et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air[J]. Corros Sci, 2019, 153: 327-332.
[21] YE B, WEN T, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics[J]. Acta Mater, 2019, 170: 15-23.
[22] CHEN H, WU Z, LIU M, et al. Synthesis, microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics[J]. J Eur Ceram Soc, 2021, 41(15): 7498-7506.
[23] GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep-UK, 2016, 6(1): 1-10.
[24] TALLARITA G, LICHERI R, GARRONI S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides[J]. Scripta Mater, 2019, 158: 100-104.
[25] MAYRHOFER PH, KIRNBAUER A, ERTELTHALER P, et al. High-entropy ceramic thin films; a case study on transition metal diborides[J]. Scripta Mater, 2018, 149: 93-97.
[26] SHARMA Y, MUSICO BL, GAO X, et al. Single-crystal high entropy perovskite oxide epitaxial films[J]. Phys Rev Mater, 2018, 2(6): 060404.
[27] SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides[J]. J Eur Ceram Soc, 2018, 38(5): 2318-2327.
[28] JIANG S, HU T, GILD J, et al. A new class of high-entropy perovskite oxides[J]. Scripta Mater, 2018, 142: 116-120.
[29] GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides[J]. J Eur Ceram Soc, 2018, 38(10): 3578-3584.
[30] CHEN K, PEI X, TANG L, et al. A five-component entropy-stabilized fluorite oxide[J]. J Eur Ceram Soc, 2018, 38(11): 4161-4164.
[31] SAI GAUTAM G, HARI KUMAR K C. Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: a first principles study[J]. J Alloys Compd, 2014, 587: 380-386.
[32] SHARMA A S, YADAV S, BISWAS K, et al. High-entropy alloys and metallic nanocomposites: processing challenges, microstructure development and property enhancement[J]. Mat Sci Eng R, 2018, 131: 1-42.
[33] HARRINGTON T J, GILD J, SARKER P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Mater, 2019, 166: 271-280.
[34] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6(1): 1-8.
[35] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack Measurements[J]. J Am Ceram Soc, 1981, 64(9): 533-538.
[36] MEDVE? D, BALKO J, SEDL?K R, et al. Wear resistance of ZrB2 based ceramic composites[J]. Int J Refract Met H, 2019, 81: 214-224.
[37] GUO Z, XIONG J, YANG M, et al. Effect of Mo2C on the microstructure and properties of WC-TiC-Ni cemented carbide[J]. Int J Refract Met H, 2008, 26(6): 601-605.
[39] H?TCH M J, PUTAUX J L, P?NISSON J M. Measurement of the displacement field of dislocations to 0.03?? by electron microscopy[J]. Nature, 2003, 423(6937): 270-273.
[41] SHAHEDI A, NAYEBI B, SHOKOUHIMEHR M. TEM characterization of spark plasma sintered ZrB2-SiC-graphene nanocomposite[J]. Ceram Int, 2018, 44(13): 15269-15273.
[42] CHO J, LI Q, WANG H, et al. High temperature deformability of ductile flash-sintered ceramics via in-situ compression[J]. Nat Commun, 2018, 9(1): 1-9.
[43] ZHAO N, ZHAO Y, WEI Y, et al. Friction and wear behavior of TaC ceramic layer formed in-situ on the gray cast iron[J]. Tribol Int, 2019, 135: 181-188.
[44] ZHANG W, YAMASHITA S, KITA H. Self lubrication of pressureless sintered SiC ceramics[J]. J Mater Res Technol, 2020, 9(6): 12880-12888.