• Optics and Precision Engineering
  • Vol. 26, Issue 3, 715 (2018)
ZHAO Yang, LI Xin-bo, and SHI Yao-wu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20182603.0715 Cite this Article
    ZHAO Yang, LI Xin-bo, SHI Yao-wu. Quaternion sparse decomposition algorithm for DOA estimation with acoustic vector sensor array[J]. Optics and Precision Engineering, 2018, 26(3): 715 Copy Citation Text show less
    References

    [1] YANG D S, HONG L J. Theory and Application of vector Hydrophone Array[M]. Beijing: Science Press, 2009:45-47. (in Chinese)

    [2] WONG K T, ZOLTOWSKI M D. Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace[J].IEEE Journal of Oceanic Engineering, 2000,25(2):262-273.

    [3] WONG K T, ZOLTOWSKI M D. Root-MUSIC based azimuth-elevation angle of arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones[J]. IEEE Transactions on Signal Processing, 1999,47(12):3250-3260.

    [4] SUN G Q,Li Q H. Research progress on acoustic vector sensor[J].Journal of acoustics,2004 ,29(6):481-490. (in Chinese)

    [5] NEHORAI A, PALDI E. Acoustic vector-sensor array processing[J].IEEE Trans on Signal Processing,1994,42(9):2481-2491.

    [6] RAHAMIM D, TABRIKIAN J, SHAVIT R.Source localization using vector sensor array in a multipath environment[J]. IEEE Trans on Signal Processing,2004,52(11): 3096-3103.

    [7] LAI H,BELL K,COX H.DOA estimation using vector sensor arrays[C]. Forty-Second Asilomar Conference on Signals,Systems&Computers.California: Pacific Grove,2008: 293-297.

    [8] PAULUS C,MARS J I.Vector-sensor array processing for polarization parameters and DOA estimation[J]. EURASIP Journal on Advances in Signal Processing, 2010 Article ID 850265:1-13.

    [9] PALANISAMY P,KALYANASUNDARAM N,SWETHA P M.Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array[J]. Signal Precessing, 2011,92(1):1-10.

    [10] MALIOUTOV D M. Approximate Interence in Gaussian Graphical Models [D]. Cambridge: Massachusetts Institute of Technology, 2003.

    [11] MALIOUTOV D M, CETIN M, WILLSKY A S. Homotopy continuation for sparse signal representation [C]. 2005 IEEE Trans. on SP, 2005: 533010.

    [12] MALLAT S G, ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41(12): 3397-3415.

    [13] FU J SH. Acoustic Vector-Sensor Array Processing Based on Sparse Decomposition Theory[D] .Harbin: Harbin Engineering University. (in Chinese)

    [14] ZHU M, SUN J G,LIANG W, et al.. Multiple multifocus color image fusion using quaternion curvelettransform[J].Opt. Precision Eng., 2013, 21 (10) : 2671-2678. (in Chinese)

    [15] PANG H C, ZHU M, GUO L Q. Objective color image fusion performance index[J]. Opt. Precision Eng., 2013, 21(9):2348-2353. (in Chinese)

    [16] HOBIGER M, CORNOU C, BARD P, et al.. A quaternion-based array processing technique for surface wave polarizationanalysis[C]. 2011 IEEE Statistical Signal Processing Workshop (SSP), 2011: 5-8.

    [17] SEBASTIAN M, NICOLAS L B. High resolution vector-sensor array processing using quaternions[C].Statistical SignalProcessing, 2005 IEEE/SP 13th Workshop on. IEEE, 2005: 918-923.

    [18] LI X B, LI X Q, LIU G J, et al.. Quaternion min-norm algorithm for DOA estimation with acoustic vector sensor array[J]. Opt. Precision Eng., 2014, 22(7):1969-1975. (in Chinese)

    [19] XU H X, ZHAO Y J. DOA estimation based on compressive sampling array[J].Journal of Electronic Measurement and Instrument, 2012, 26(3):208-214. (in Chinese)

    ZHAO Yang, LI Xin-bo, SHI Yao-wu. Quaternion sparse decomposition algorithm for DOA estimation with acoustic vector sensor array[J]. Optics and Precision Engineering, 2018, 26(3): 715
    Download Citation