• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 7, 1716 (2023)
ZHANG Wenxue1,*, GUO Junhu1, ZHANG Yongkang1, BAI Min1, and HE Cheng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Wenxue, GUO Junhu, ZHANG Yongkang, BAI Min, HE Cheng. Preparation of FeSe2/Ti3C2Tx Composites with Sodium Storage Properties[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1716 Copy Citation Text show less
    References

    [1] DENG S J, ZHANG Y, XIE D, et al. Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage[J]. Nano Energy, 2019, 58: 355-364.

    [2] GONALVES R, LIZUNDIA E, SILVA M M, et al. Mesoporous cellulose nanocrystal membranes as battery separators for environmentally safer lithium-ion batteries[J]. ACS Appl Energy Mater, 2019, 2(5): 3749-3761.

    [3] WU Y P, HUANG L, HUANG X K, et al. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life[J]. Energy Environ Sci, 2017, 10(8): 1854-1861.

    [5] HONG S Y, KIM Y, PARK Y, et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions[J]. Energy Environ Sci, 2013, 6(7): 2067-2081.

    [6] WANG J, KONG F J, CHEN J Y, et al. Metal-organic-framework-derived FeSe2 @carbon embedded into nitrogen-doped graphene sheets with binary conductive networks for rechargeable batteries[J]. ChemElectroChem, 2019, 6(10): 2805-2811.

    [8] ZHANG D M, JIA J H, YANG C C, et al. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries[J]. Energy Storage Mater, 2020, 24: 439-449.

    [9] ZHANG Y W, WU Y K, ZHONG W, et al. Highly efficient sodium-ion storage enabled by an rGO-wrapped FeSe2 composite[J]. ChemSusChem, 2021, 14(5): 1336-1343.

    [10] YANG S Y, HE M, DENG X Q, et al. Wafer-like FeSe2-NiSe2/C nanosheets as efficient anode for high-performances lithium batteries[J]. Chem Phys Lett, 2020, 746: 137274.

    [11] CHENG R F, WANG Z H, CUI C, et al. One-step incorporation of nitrogen and vanadium between Ti3C2Tx MXene interlayers enhances lithium ion storage capability[J]. J Phys Chem C, 2020, 124(11): 6012-6021.

    [12] TAO Y P, HUANG T, DING C X, et al. Few-layer phosphorene: an emerging electrode material for electrochemical energy storage[J]. Appl Mater Today, 2019, 15: 18-33.

    [13] DU G Y, TAO M L, GAO W, et al. Preparation of MoS2/Ti3C2Tx composite as anode material with enhanced sodium/lithium storage performance[J]. Inorg Chem Front, 2019, 6(1): 117-125.

    [14] ZHANG T, PAN L M, TANG H, et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: Enhanced exfoliation and delamination[J]. J Alloys Compd, 2017, 695: 818-826.

    [15] YANG S H, LEE Y J, KANG H, et al. Carbon-coated three-dimensional MXene/iron selenide ball with core-shell structure for high-performance potassium-ion batteries[J]. Nano-Micro Lett, 2022, 14(1): 17.

    [16] FAN H S, YU H, WU X L, et al. Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties[J]. ACS Appl Mater Interfaces, 2016, 8(38): 25261-25267.

    [17] GE P, HOU H S, LI S J, et al. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage[J]. Adv Funct Mater, 2018, 28(30): 1801765.

    [18] SU H, JAFFER S, YU H J. Transition metal oxides for sodium-ion batteries[J]. Energy Storage Mater, 2016, 5: 116-131.

    [19] WAN F, WU X L, GUO J Z, et al. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries[J]. Nano Energy, 2015, 13: 450-457.

    ZHANG Wenxue, GUO Junhu, ZHANG Yongkang, BAI Min, HE Cheng. Preparation of FeSe2/Ti3C2Tx Composites with Sodium Storage Properties[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1716
    Download Citation