• Frontiers of Optoelectronics
  • Vol. 15, Issue 1, 12200 (2022)
Seyedeh Leila Mortazavifar1,*, Mohammad Reza Salehi1, Mojtaba Shahraki2, and Ebrahim Abiri1
Author Affiliations
  • 1Department of Electrical and Electronics Engineering, Shiraz University of Technology, Modarres Blvd, 71557-13876 Shiraz, Iran
  • 2Faculty of Electrical and Electronics Engineering, University of Sistan and Baluchestan, Daneshgah Blvd, 98613-35856 Zahedan, Iran
  • show less
    DOI: 10.1007/s12200-022-00010-x Cite this Article
    Seyedeh Leila Mortazavifar, Mohammad Reza Salehi, Mojtaba Shahraki, Ebrahim Abiri. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200 Copy Citation Text show less
    References

    [1] Samajdar, D.: Light-trapping strategy for PEDOT:PSS/c-Si nanopyramid based hybrid solar cells embedded with metallic nanoparticles. Sol. Energy 190, 278–285 (2019)

    [2] Richardson, B.J., Zhu, L., Yu, Q.: Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates. Nanotechnology 28(16), 165401 (2017)

    [3] Mahani, F.F., Mokhtari, A.: Enhancement of ITO-free organic solar cells utilizing plasmonic nanohole electrodes. In: 7th International Conference on Nanotechnology (ICN) (2017)

    [4] Makableh, Y.F., Al-Fandi, M., Khasawneh, M., Tavares, C.J.: Comprehensive design analysis of ZnO anti-reflection nanostructures for Si solar cells. Superlattices Microstruct. 124, 1–9 (2018)

    [5] Mokkapati, S., Beck, F., Catchpole, K.: Analytical approach for design of blazed dielectric gratings for light trapping in solar cells. J. Phys. D Appl. Phys. 44(5), 055103 (2011)

    [6] Luo, Z., Zhang, X.A., Evans, B.A., Chang, C.H.: Active periodic magnetic nanostructures with high aspect ratio and ultrahigh pillar density. ACS Appl. Mater. Interfaces 12(9), 11135–11143 (2020)

    [7] Garnett, E., Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10(3), 1082–1087 (2010)

    [8] Mortazavifar, S.L., Salehi, M.R., Shahraki, M., Abiri, E.: Optimization of light absorption in ultrathin elliptical silicon nanowire arrays for solar cell applications. J. Mod. Optics 1–13 (2022)

    [9] Xu, Z., Huangfu, H., Li, X., Qiao, H., Guo, W., Guo, J., Wang, H.: Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells. Opt. Commun. 377, 104–109 (2016)

    [10] Kumar, V., Gupta, D., Kumar, R.: Optimizing photovoltaic charge generation of hybrid heterojunction core–shell silicon nanowire arrays: an FDTD analysis. ACS Omega 3(4), 4123–4128 (2018)

    [11] Eaton, S.W., Fu, A., Wong, A.B., Ning, C.Z., Yang, P.: Semiconductor nanowire lasers. Nat. Rev. Mater. 1(6), 16028 (2016)

    [12] Zhou, K., Zhao, Z., Pan, L., Wang, Z.: Silicon nanowire pH sensors fabricated with CMOS compatible sidewall mask technology. Sens. Actuators B Chem. 279, 111–121 (2019)

    [13] Nami, M., Stricklin, I.E., DaVico, K.M., Mishkat-Ul-Masabih, S., Rishinaramangalam, A.K., Brueck, S.R.J., Brener, I., Feezell, D.F.: Carrier dynamics and electro-optical characterization of high-performance GaN/InGaN core-shell nanowire light-emitting diodes. Sci. Rep. 8(1), 501 (2018)

    [14] Manning, H.G., da Rocha, C.G., Callaghan, C.O., Ferreira, M.S., Boland, J.J.: The electro-optical performance of silver nanowire networks. Sci. Rep. 9(1), 11550 (2019)

    [15] Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B.: Optically resonant dielectric nanostructures. Science 354(6314), aag2472 (2016)

    [16] Cao, L., Fan, P., Vasudev, A.P., White, J.S., Yu, Z., Cai, W., Schuller, J.A., Fan, S., Brongersma, M.L.: Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10(2), 439–445 (2010)

    [17] Kim, S.K., Zhang, X., Hill, D.J., Song, K.D., Park, J.S., Park, H.G., Cahoon, J.F.: Doubling absorption in nanowire solar cells with dielectric shell optical antennas. Nano Lett. 15(1), 753–758 (2015)

    [18] Zhang, C., Yang, Z., Shang, A., Wu, S., Zhan, Y., Li, X.: Improved optical absorption of silicon single-nanowire solar cells by offaxial core/shell design. Nano Energy 17, 233–240 (2015)

    [19] Mortazavifar, S.L., Salehi, M.R., Shahraki, M., Abiri, E.: Absorption improvement of a-Si/c-Si rectangular nanowire arrays in ultrathin solar cells. J. Photonics Energy 11(1), 014502 (2021)

    [20] Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S., Atwater, H.A.: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9(3), 239–244 (2010)

    [21] Lee, H.C., Na, J.Y., Moon, Y.J., Park, J.S., Ee, H.S., Park, H.G., Kim, S.K.: Three-dimensional grating nanowires for enhanced light trapping. Opt. Lett. 41(7), 1578–1581 (2016)

    [22] Park, J.S., Kim, K.H., Hwang, M.S., Zhang, X., Lee, J.M., Kim, J., Song, K.D., No, Y.S., Jeong, K.Y., Cahoon, J.F., Kim, S.K., Park, H.G.: Enhancement of light absorption in silicon nanowire photovoltaic devices with dielectric and metallic grating structures. Nano Lett. 17(12), 7731–7736 (2017)

    [23] Urakseev, M., Vazhdaev, K., Sagadeev, A.: Optoelectronic Devices with Diffraction of Light on a Phase Grating. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) IEEE, 1–6 (2018)

    [24] Martínez, R.V., Martínez, J., Garcia, R.: Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21(24), 245301 (2010)

    [25] Jebril, S.: Synthesis and characterization of vertical and horizontal nanowires for functional device fabrication. Christian-Albrechts Universitat Kiel (2009)

    [26] Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)

    [27] Yang, P., Yan, R., Fardy, M.: Semiconductor nanowire: what’s next? Nano Lett. 10(5), 1529–1536 (2010)

    [28] Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nanoscience And Technology: A Collection of Reviews from Nature Journals, pp. 137–146, (2010)

    [29] Yan, R., Gargas, D., Yang, P.: Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009)

    [30] Hochbaum, A.I., Yang, P.: Semiconductor nanowires for energy conversion. Chem. Rev. 110(1), 527–546 (2010)

    [31] Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)

    [32] Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399–1401 (2000)

    [33] Jin, S., Whang, D., McAlpine, M.C., Friedman, R.S., Wu, Y., Lieber, C.M.: Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4(5), 915–919 (2004)

    [34] Fan, Z., Ho, J.C., Jacobson, Z.A., Yerushalmi, R., Alley, R.L., Razavi, H., Javey, A.: Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8(1), 20–25 (2008)

    [35] Tsivion, D., Schvartzman, M., Popovitz-Biro, R., von Huth, P., Joselevich, E.: Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333(6045), 1003–1007 (2011)

    [36] Bronstrup, G., Leiterer, C., Jahr, N., Gutsche, C., Lysov, A., Regolin, I., Prost, W., Tegude, F.J., Fritzsche, W., Christiansen, S.: A precise optical determination of nanoscale diameters of semiconductor nanowires. Nanotechnology 22(38), 385201 (2011)

    [37] Kim, S.K., Day, R.W., Cahoon, J.F., Kempa, T.J., Song, K.D., Park, H.G., Lieber, C.M.: Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12(9), 4971–4976 (2012)

    [38] Yuan, X., Chen, X., Yan, X., Wei, W., Zhang, Y., Zhang, X.: Absorption-enhanced ultra-thin solar cells based on horizontally aligned p-i-n nanowire arrays. Nanomaterials (Basel, Switzerland) 10(6), 1111 (2020)

    [39] Yan, X., Liu, H., Sibirev, N., Zhang, X., Ren, X.: Performance enhancement of ultra-thin nanowire array solar cells by bottom reflectivity engineering. Nanomaterials (Basel, Switzerland) 10(2), 184 (2020)

    [40] Lee, Y.H., Ha, M., Song, I., Lee, J.H., Won, Y., Lim, S., Ko, H., Oh, J.H.: High-performance hybrid photovoltaics with efficient interfacial contacts between vertically aligned ZnO nanowire arrays and organic semiconductors. ACS Omega 4(6), 9996–10002 (2019)

    [41] Akhmadaliev, C., Schmidt, B., Bischoff, L.: Defect induced formation of Co Si 2 nanowires by focused ion beam synthesis. Appl. Phys. Lett. 89(22), 223129 (2006)

    [42] Minamisawa, R., Habicht, S., Buca, D., Carius, R., Trellenkamp, S., Bourdelle, K.K., Mantl, S.: Elastic strain and dopant activation in ion implanted strained Si nanowires. J. Appl. Phys. 108(12), 124908 (2010)

    [43] Ou, X., Kogler, R., Wei, X., Mücklich, A., Wang, X., Skorupa, W., Facsko, S.: Fabrication of horizontal silicon nanowire arrays on insulator by ion irradiation. AIP Adv. 1(4), 042174 (2011)

    [44] Liu, C., Di Falco, A., Molinari, D., Khan, Y., Ooi, B.S., Krauss, T.F., Fratalocchi, A.: Enhanced energy storage in chaotic optical resonators. Nat. Photonics 7(6), 473–478 (2013)

    [45] Vodolazskaya, I.V., Eserkepov, A.V., Akhunzhanov, R.K., Tarasevich, Y.Y.: Effect of tunneling on the electrical conductivity of nanowire-based films: computer simulation within a core–shell model. J. Appl. Phys. 126(24), 244903 (2019)

    [46] Park, H.G., Qian, F., Barrelet, C.J., Li, Y.: Microstadium singlenanowire laser. Appl. Phys. Lett. 91(25), 251115 (2007)

    [47] Kim, J.H., Bum Kang, S., Yu, H.H., Kim, J., Ryu, J., Lee, J.W., Jin Choi, K., Kim, C.M., Yi, C.H.: Augmentation of absorption channels induced by wave-chaos effects in free-standing nanowire arrays. Opt. Express 28(16), 23569–23583 (2020)

    [48] Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008)

    [49] Rojo, M.M., Calero, O.C., Lopeandia, A.F., Rodriguez-Viejo, J., Martín-Gonzalez, M.: Review on measurement techniques of transport properties of nanowires. Nanoscale 5(23), 11526–11544 (2013)

    [50] Yao, J., Yan, H., Lieber, C.M.: A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013)

    [51] Yerushalmi, R., Jacobson, Z.A., Ho, J.C., Fan, Z., Javey, A.: Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 91(20), 203104 (2007)

    [52] Yu, G., Cao, A., Lieber, C.M.: Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2(6), 372–377 (2007)

    [53] Li, C., Fobelets, K., Liu, C., Xue, C., Cheng, B., Wang, Q.: Agassisted lateral etching of Si nanowires and its application to nanowire transfer. Appl. Phys. Lett. 103(18), 183102 (2013)

    [54] Zhang, D., Cheng, G., Wang, J., Zhang, C., Liu, Z., Zuo, Y., Zheng, J., Xue, C., Li, C., Cheng, B., Wang, Q.: Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance. Nanoscale Res. Lett. 9(1), 661 (2014)

    [55] Peng, K., Yan, Y., Gao, S., Zhu, J.: Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv. Func. Mater. 13(2), 127–132 (2003)

    [56] Ghoshal, T., Senthamaraikannan, R., Shaw, M.T., Holmes, J.D., Morris, M.A.: Fabrication of ordered, large scale, horizontallyaligned si nanowire arrays based on an in situ hard mask block copolymer approach. Adv. Mater. 26(8), 1207–1216 (2014)

    [57] Bunimovich, L.: On ergodic properties of some billiards. Funct. Anal. Appl. 8, 254–255 (1974)

    [58] Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105(3), 391–414 (1986)

    [59] Donnay, V.J.: Using integrability to produce chaos: billiards with positive entropy. Commun. Math. Phys. 141(2), 225–257 (1991)

    [60] Markarian, R., Kamphorst, S.O., de Carvalho S.P.: Chaotic properties of the elliptical stadium. arxiv preprint arxiv: chao- dyn/95010 04 (1995)

    [61] Del Magno, G., Markarian, R.: Bernoulli elliptical stadia. Commun. Math. Phys. 233(2), 211–230 (2003)

    [62] Lopac, V., Mrkonjic, I., Pavin, N., Radic, D.: Chaotic dynamics of the elliptical stadium billiard in the full parameter space. Physica D 217(1), 88–101 (2006)

    [63] Lopac, V., Mrkonjic, I., Radic, D.: Chaotic dynamics and orbit stability in the parabolic oval billiard. Phys. Rev. E 66(3 3 Pt 2A), 036202 (2002)

    [64] Stein, J., Stockmann, H., Stoffregen, U.: Microwave studies of billiard Green functions and propagators. Phys. Rev. Lett. 75(1), 53–56 (1995)

    [65] Stockmann, H.J.: Quantum Chaos: an Introduction. American Association of Physics Teachers (2000)

    [66] Sturmberg, B.C., Dossou, K.B., Botten, L.C., Asatryan, A.A., Poulton, C.G., McPhedran, R.C., de Sterke, C.M.: Optimizing photovoltaic charge generation of nanowire arrays: a simple semianalytic approach. ACS Photonics 1(8), 683–689 (2014)

    [67] Gupta, A.K., Raman, A., Kumar, N.: Cylindrical nanowire-TFET with Core-Shell Channel architecture: design and investigation. Silicon 12, 1–8 (2019)

    [68] Kempa, T.J., Cahoon, J.F., Kim, S.K., Day, R.W., Bell, D.C., Park, H.G., Lieber, C.M.: Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012)

    [69] Bronstrup, G., Jahr, N., Leiterer, C., Csáki, A., Fritzsche, W., Christiansen, S.: Optical properties of individual silicon nanowires for photonic devices. ACS Nano 4(12), 7113–7122 (2010)

    [70] Cao, L., Park, J.S., Fan, P., Clemens, B., Brongersma, M.L.: Resonant germanium nanoantenna photodetectors. Nano Lett. 10(4), 1229–1233 (2010)

    [71] Kempa, T.J., Day, R.W., Kim, S.K., Park, H.G., Lieber, C.M.: Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6(3), 719–733 (2013)

    [72] Kempa, T.J., Tian, B., Kim, D.R., Hu, J., Zheng, X., Lieber, C.M.: Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)

    [73] Sze, S.M., Li, Y., Ng, K.K.: Physics of Semiconductor Devices. John Wiley & Sons (2021) 74. Mohammed, K.H.: Fabrication of horizontal silicon nanowires using a thin aluminum film as a catalyst. University of Arkansas (2011)

    [74] Rothman, A., Forsht, T., Danieli, Y., Popovitz-Biro, R., Rechav, K., Houben, L., Joselevich, E.: Guided growth of horizontal ZnS nanowires on flat and faceted sapphire surfaces. J. Phys. Chem. C 122(23), 12413–12420 (2018)

    [75] Reut, G., Oksenberg, E., Popovitz-Biro, R., Rechav, K., Joselevich, E.: Guided growth of horizontal p-type ZnTe nanowires. J. Phys. Chem. C 120(30), 17087–17100 (2016)

    [76] Wu, S., Yi, X., Tian, S., Zhang, S., Liu, Z., Wang, L., Wang, J., Li, J.: Understanding homoepitaxial growth of horizontal kinked GaN nanowires. Nanotechnology 32(9), 095606 (2021)

    [77] Fan, P., Huang, K.C., Cao, L., Brongersma, M.L.: Redesigning photodetector electrodes as an optical antenna. Nano Lett. 13(2), 392–396 (2013)

    [78] Tang, J., Huo, Z., Brittman, S., Gao, H., Yang, P.: Solutionprocessed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6(9), 568–572 (2011)

    [79] Tian, B., et al.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)

    [80] Zhang, X., Pinion, C.W., Christesen, J.D., Flynn, C.J., Celano, T.A., Cahoon, J.F.: Horizontal silicon nanowires with radial p–n junctions: a platform for unconventional solar cells. J. Phys. Chem. Lett. 4(12), 2002–2009 (2013)

    [81] Song, K.D., Kempa, T.J., Park, H.G., Kim, S.K.: Laterally assembled nanowires for ultrathin broadband solar absorbers. Opt. Express 22(103, Suppl 3), A992–A1000 (2014)

    [82] Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press (1998)

    [83] Wang, P., Menon, R.: Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express 22(101, Suppl 1), A99–A110 (2014)

    [84] Wang, B., Stevens, E., Leu, P.W.: Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells. Opt. Express 22(102 Suppl 2), A386–A395 (2014)

    [85] Pomplun, J., Burger, S., Zschiedrich, L., Schmidt, F.: Adaptive finite element method for simulation of optical nano structures. Physica Status Solidi (b) 244(10), 3419–3434 (2007)

    [86] Yu, P., Yao, Y., Wu, J., Niu, X., Rogach, A.L., Wang, Z.: Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells. Sci. Rep. 7(1), 7696 (2017)

    [87] Chang, R.K., Campillo, A.J.: Optical Processes in Microcavities. World Scientific (1996)

    [88] Berry, M.V.: Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ‘billiard.’ Eur. J. Phys. 2(2), 91–102 (1981)

    [89] Soderstrom, K., Haug, F.J., Escarre, J., Cubero, O., Ballif, C.: Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler. Appl. Phys. Lett. 96(21), 213508 (2010)

    [90] Kim, S.K., Song, K.D., Kempa, T.J., Day, R.W., Lieber, C.M., Park, H.G.: Design of nanowire optical cavities as efficient photon absorbers. ACS Nano 8(4), 3707–3714 (2014)

    Seyedeh Leila Mortazavifar, Mohammad Reza Salehi, Mojtaba Shahraki, Ebrahim Abiri. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200
    Download Citation