• Chinese Journal of Lasers
  • Vol. 50, Issue 6, 0603003 (2023)
Qianting Yang, Risalat Emin, Yanmei Sun, Renagul Abdurahman*, Xuefeng Sun, and Tongsheng Yang
Author Affiliations
  • Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, Xinjiang , China
  • show less
    DOI: 10.3788/CJL220706 Cite this Article Set citation alerts
    Qianting Yang, Risalat Emin, Yanmei Sun, Renagul Abdurahman, Xuefeng Sun, Tongsheng Yang. Enhancement of Near-Infrared Persistent Luminescence of BaGa2O4∶Cr3+ by Sm3+ Ion Doping[J]. Chinese Journal of Lasers, 2023, 50(6): 0603003 Copy Citation Text show less
    References

    [1] Sun X F, Abdurahman R, Mamtimen G et al. Progress in research and application of ZGO based persistent luminecence nanoparticles[J]. New Chemical Materials, 49, 35-39, 45(2021).

    [2] Li Y, Qiu J R. Persistently luminescent phosphors[J]. Laser & Optoelectronics Progress, 58, 1516002(2021).

    [3] Abdurahman R, Yang T S, Liu W G et al. Synthesis and photoluminescence properties of Zn1+xGa2-0.01-yGexO3x+4∶0.01Cr, yBi persistent luminescence nanoparticles[J]. Laser & Optoelectronics Progress, 58, 2116001(2021).

    [4] le Masne de Chermont Q, Chanéac C, Seguin J et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 9266-9271(2007).

    [5] Abdurahman R, Yang C X, Yan X P. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy[J]. Chemical Communications, 52, 13303-13306(2016).

    [6] Jin Y, Long X Y, Zhu Y N et al. Optical performance study of Sr2ZnSi2O7∶Eu2+, Dy3+, SrAl2O4∶Eu2+, Dy3+ and Y2O2S∶Eu3+, Mg2+, Ti4+ ternary luminous fiber[J]. Journal of Rare Earths, 34, 1206-1212(2016).

    [7] Jia D D. Enhancement of long-persistence by Ce Co-doping in CaS∶Eu2+, Tm3+ red phosphor[J]. Journal of the Electrochemical Society, 153, H198-H201(2006).

    [8] Kahlenberg V, Fischer R X, Parise J B. The stuffed framework structure of BaGa2O4[J]. Journal of Solid State Chemistry, 154, 612-618(2000).

    [9] Moriya T, Kushida T. Spontaneous and stimulated luminescence due to exciton-exciton collisions in semiconductors[J]. Journal of Luminescence, 12/13, 617-621(1976).

    [10] Noto L L, Poelman D, Orante-Barrón V R et al. Photoluminescence and thermoluminescence properties of BaGa2O4[J]. Physica B: Condensed Matter, 535, 268-271(2018).

    [11] Li H M, Cai J Z, Pang R et al. A strategy for developing thermal-quenching-resistant emission and super-long persistent luminescence in BaGa2O4∶Bi3+[J]. Journal of Materials Chemistry C, 7, 13088-13096(2019).

    [12] Zhou X Q, Ju G F, Dai T S et al. Strontium substitution enhancing a novel Sm3+-doped barium gallate phosphor with bright and red long persistent luminescence[J]. Journal of Luminescence, 218, 116820(2020).

    [13] Yang Q T, Abdurahman R, Yan Y et al. Brief introduction of Cr3+-doped persistent luminescence nanoparticles in biomedical applied research[J]. Laser & Optoelectronics Progress, 58, 0800003(2021).

    [14] Bessière A, Jacquart S, Priolkar K et al. ZnGa2O4∶Cr3+: a new red long-lasting phosphor with high brightness[J]. Optics Express, 19, 10131-10137(2011).

    [15] Liu F, Liang Y J, Pan Z W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈∶Cr³⁺, Yb³⁺, Er³⁺ phosphor[J]. Physical Review Letters, 113, 177401(2014).

    [16] de Clercq O Q, Martin L I D J, Korthout K et al. Probing the local structure of the near-infrared emitting persistent phosphor LiGa5O8∶Cr3+[J]. Journal of Materials Chemistry C, 5, 10861-10868(2017).

    [17] Basavaraju N, Sharma S, Bessière A et al. Red persistent luminescence in MgGa2O4∶Cr3+; a new phosphor for in vivo imaging[J]. Journal of Physics D: Applied Physics, 46, 375401(2013).

    [18] Yang Q T, Abdurahman R, Yang T S et al. Wavelength-tunable barium gallate persistent luminescence phosphors with enhanced luminescence[J]. Chinese Optics Letters, 20, 031602(2022).

    [19] Liu W G, Abdurahman R, Aiwaili R. Research progress on modification of persistent luminescence nanoparticles[J]. Micronanoelectronic Technology, 58, 976-984(2021).

    [20] Allix M, Chenu S, Véron E et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[J]. Chemistry of Materials, 25, 1600-1606(2013).

    [21] Wang K, Yan L P, Shao K et al. Near-infrared afterglow enhancement and trap distribution analysis of silicon-chromium Co-doped persistent luminescence materials Zn1+xGa2-2xSixO4:Cr3+[J]. Journal of Inorganic Materials, 34, 983-990(2019).

    [22] Zhan Y F, Liu C G, Wang M W et al. Preparation, microstructure and optical properties of Cr3+ single-doped and Eu3+/Cr3+ co-doped GdAlO3 near infrared long persistent luminescent nanoparticles[J]. Spectroscopy and Spectral Analysis, 41, 80-87(2021).

    [23] Li Y, Li Y Y, Chen R C et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence[J]. NPG Asia Materials, 7, e180(2015).

    [24] Katayama Y, Kobayashi H, Tanabe S. Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging[J]. Applied Physics Express, 8, 012102(2015).

    [25] Katayama Y, Kobayashi H, Ueda J et al. Persistent luminescence properties of Cr3+-Sm3+ activated LaAlO3 perovskite[J]. Optical Materials Express, 6, 1500-1505(2016).

    [26] Li J L, Wang C C, Shi J P et al. Porous GdAlO3∶Cr3+, Sm3+ drug carrier for real-time long afterglow and magnetic resonance dual-mode imaging[J]. Journal of Luminescence, 199, 363-371(2018).

    [27] Grinberg M, MacFarlane P I, Henderson B et al. Inhomogeneous broadening of optical transitions dominated by low-symmetry crystal-field components in Cr3+-doped gallogermanates[J]. Physical Review B: Condensed Matter and Materials Physics, 52, 3917-3929(1995).

    [28] Xu Y D, Zhang Y, Wang L et al. Red emission enhancement for CaAl12O19∶Cr3+ and CaAl12O19∶Mn4+ phosphors[J]. Journal of Materials Science: Materials in Electronics, 28, 12032-12038(2017).

    [29] Zhang Y. Research on the preparation and photoluminescent properties of aluminate-based (CaAl12O19) red phosphors[D](2017).

    [30] Meng X Y, Bao R T, Jin S et al. Afterglow enhancement of AlMgGaO4∶Cr3+, Ln3+ (Ln=Eu, Sm, Yb) guiding by VRBE diagram[J]. Optik, 222, 165325(2020).

    [31] Que M D, Que W X, Zhou T et al. Enhanced photoluminescence property of sulfate ions modified YAG:Ce3+ phosphor by co-precipitation method[J]. Journal of Rare Earths, 35, 217-222(2017).

    [32] Liu Z S, Jing X P, Wang L X. Luminescence of native defects in Zn2GeO4[J]. Journal of the Electrochemical Society, 154, H500-H506(2007).

    [33] Abdukayum A, Abdurahman R, Tuerdi A et al. Synthesis and photoluminescence properties of β-Ga2O3∶Cr3+ persistent luminescence nanoparticles with near-infrared afterglow[J]. Chemical Journal of Chinese Universities, 37, 810-816(2016).

    [34] Pan Z W, Lu Y Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 11, 58-63(2012).

    [35] Li Y, Gecevicius M, Qiu J R. Long persistent phosphors: from fundamentals to applications[J]. Chemical Society Reviews, 45, 2090-2136(2016).

    [36] Deng T T, Song E H, Zhou Y Y et al. Implementation of high color quality, high luminous warm WLED using efficient and thermally stable Rb3AlF6∶Mn4+ as red color converter[J]. Journal of Alloys and Compounds, 795, 453-461(2019).

    [37] Deng C, Lin L T, Tang L et al. Synthesis and luminescence of ScVO4∶Eu3+, Bi3+, Al3+ phosphors[J]. Chinese Journal of Luminescence, 36, 1246-1251(2015).

    Qianting Yang, Risalat Emin, Yanmei Sun, Renagul Abdurahman, Xuefeng Sun, Tongsheng Yang. Enhancement of Near-Infrared Persistent Luminescence of BaGa2O4∶Cr3+ by Sm3+ Ion Doping[J]. Chinese Journal of Lasers, 2023, 50(6): 0603003
    Download Citation