• Nano-Micro Letters
  • Vol. 16, Issue 1, 008 (2024)
Nan He, Haonan Wang, Haotian Zhang, Bo Jiang..., Dawei Tang and Lin Li*|Show fewer author(s)
Author Affiliations
  • School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01215-1 Cite this Article
    Nan He, Haonan Wang, Haotian Zhang, Bo Jiang, Dawei Tang, Lin Li. Ionization Engineering of Hydrogels Enables Highly Efficient Salt-Impeded Solar Evaporation and Night-Time Electricity Harvesting[J]. Nano-Micro Letters, 2024, 16(1): 008 Copy Citation Text show less
    References

    [1] M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2(2), e1500323 (2016).

    [2] H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of cof membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022).

    [3] X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3d graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14(1), 174 (2022).

    [4] Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/c as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14(1), 176 (2022).

    [5] X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15(1), 148 (2023).

    [6] S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021).

    [7] M. Elimelech, W.A. Phillip, The future of seawater desalination: Energy, technology, and the environment. Sci. Adv. 333(6043), 712 (2011).

    [8] M. Cañedo-Argüelles, C.P. Hawkins, B.J. Kefford, R.B. Schäfer, B.J. Dyack et al., Saving freshwater from salts. Science 351(6276), 914 (2016).

    [9] M. Canedo-Arguelles, B.J. Kefford, C. Piscart, N. Prat, R.B. Schafe et al., Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 173, 157 (2013).

    [10] Y. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan, Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 7(9), 1903478 (2020).

    [11] G. Liu, T. Chen, J. Xu, G. Yao, J. Xie et al., Salt-rejecting solar interfacial evaporation. Cell Rep Phys Sci. 2(1), 100310 (2021).

    [12] Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12(25), 28179 (2020).

    [13] X. Chen, S. He, M. Falinski, Y. Wang, T. Li et al., Sustainable off-grid desalination of hypersaline waters by janus wood evaporator. Energy Environ. Sci. 14(10), 5347 (2021).

    [14] H. Zhang, L. Li, N. He, H. Wang, B. Wang et al., Bioinspired hierarchical evaporator via cell wall engineering for highly efficient and sustainable solar desalination. EcoMat 4(5), e12216 (2022).

    [15] L. Chen, S. He, W. Huang, D. Liu, T. Bi et al., 3d-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination. Compos. B Eng. 263, 110830 (2023).

    [16] Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31(23), 1900498 (2019).

    [17] X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15(7), 12256 (2021).

    [18] J. Chen, J.L. Yin, B. Li, Z. Ye, D. Liu et al., Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination. ACS Nano 14(12), 17419 (2020).

    [19] W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8(14), 1702884 (2018).

    [20] F. Wu, S. Qiang, X.D. Zhu, W. Jiao, L. Liu et al., Fibrous mxene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15(1), 71 (2023).

    [21] C. Xu, M. Gao, X. Yu, J. Zhang, Y. Cheng et al., Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett. 15(1), 64 (2023).

    [22] Z. Liu, Z. Zhou, N. Wu, R. Zhang, B. Zhu et al., Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 15(8), 13007 (2021).

    [23] W. Chong, R. Meng, Z. Liu, Q. Liu, J. Hu et al., Superhydrophilic polydopamine-modified carbon-fiber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator. Adv. Fiber Mater. 5(3), 1063 (2023).

    [24] C. Ge, D. Xu, H. Du, Z. Chen, J. Chen et al., Recent advances in fibrous materials for interfacial solar steam generation. Adv. Fiber Mater. 5(3), 791 (2022).

    [25] J. Han, W. Xing, J. Yan, J. Wen, Y. Liu et al., Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination. Adv. Fiber Mater. 4(5), 1233 (2022).

    [26] Z. Liu, Q. Zhong, N. Wu, H. Zhou, L. Wang et al., Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy. Desalination 509(1), 115072 (2021).

    [27] D. Xu, Z. Zhu, J. Li, Recent progress in electrospun nanofibers for the membrane distillation of hypersaline wastewaters. Adv. Fiber Mater. 4(6), 1357 (2022).

    [28] Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired mxene-decorated 3d honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14(1), 10 (2021).

    [29] X. Zhou, Y. Guo, F. Zhao, G. Yu, Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 52(11), 3244 (2019).

    [30] Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao et al., Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120(15), 7642 (2020).

    [31] Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356(6337), eaff3627 (2017).

    [32] Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13(7), 2087 (2020).

    [33] X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yua, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985 (2018).

    [34] L. Li, N. He, B. Jiang, K. Yu, Q. Zhang et al., Highly salt-resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 31(43), 2104380 (2021).

    [35] B. Wang, H. Zhang, N. He, H. Wang, B. Jiang et al., Mangrove root-inspired evaporator enables high-rate salt-resistant solar desalination. Sep. Purif. Technol. 314, 123490 (2023).

    [36] N. He, Y. Yang, H. Wang, F. Li, B. Jiang et al., Ion-transfer engineering via janus hydrogels enables ultra-high performance and salt-resistant solar desalination. Adv. Mater. 35(24), 2300189 (2023).

    [37] L. Li, N. He, S. Yang, Q. Zhang, H. Zhang et al., Strong tough hydrogel solar evaporator with wood skeleton construction enabling ultra-durable brine desalination. EcoMat 5(1), e12282 (2022).

    [38] Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019).

    [39] H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35(5), 2207262 (2023).

    [40] F. Li, N. Li, S. Wang, L. Qiao, L. Yu et al., Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination. Adv. Funct. Mater. 31(40), 2104464 (2021).

    [41] F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5(5), 388 (2020).

    [42] J. Zeng, Q. Wang, Y. Shi, P. Liu, R. Chen, Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv. Energy Mater. 9(38), 1900552 (2019).

    [43] X. Li, G. Ni, T. Cooper, N. Xu, J. Li et al., Measuring conversion efficiency of solar vapor generation. Joule 3(8), 1798 (2019).

    [44] B.V. Crist, Handbooks of Monochromatic XPS Spectra (XPS International Inc.; California, 1999), pp. 93–98, 241–252, 307–311

    [45] F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater. 10(16), 2000035 (2020).

    [46] H. Qiu, E. Wanigasekara, Y. Zhang, T. Tran, D.W. Armstrong, Development and evaluation of new zwitterionic hydrophilic interaction liquid chromatography stationary phases based on 3-p, p-diphenylphosphonium-propylsulfonate. J. Chromatogr. A 1218(44), 8075 (2011).

    [47] H. Ju, A.C. Sagle, B.D. Freeman, J.I. Mardel, A.J. Hill, Characterization of sodium chloride and water transport in crosslinked poly(ethylene oxide) hydrogels. J. Membr. Sci. 358(1–2), 131 (2010).

    [48] R. Naohara, S. Namai, J. Kamiyama, T. Ikeda-Fukazawa, Structure and diffusive properties of water in polymer hydrogels. J. Phys. Chem. B 126(40), 7992 (2022).

    [49] F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13(6), 489 (2018).

    [50] J.-F. Louf, N.B. Lu, M.G. O’Connell, H.J. Cho, S.S. Datta, Under pressure: Hydrogel swelling in a granular medium. Sci. Adv. 7(7), eabd711 (2021).

    [51] S. Sarkar, A.K. SenGupta, P. Prakash, The donnan membrane principle: opportunities for sustainable engineered processes and materials. Environ. Sci. Technol. 44(4), 1161 (2010).

    [52] K. Zuo, K. Wang, R.M. DuChanois, Q. Fang, E.M. Deemer et al., Selective membranes in water and wastewater treatment: Role of advanced materials. Mater. Today 50, 516 (2021).

    [53] L. Li, J. Zhang, Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on janus graphene@silicone sponges. Nano Energy 81, 105682 (2021).

    [54] X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32(34), 1908269 (2020).

    [55] L. Zhu, L. Sun, H. Zhang, H. Aslan, Y. Sun et al., A solution to break the salt barrier for high-rate sustainable solar desalination. Energy Environ. Sci. 14(4), 2451 (2021).

    [56] L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11(1), 521 (2020).

    [57] J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583 (2010).

    [58] J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489(7414), 133 (2012).

    [59] G. Chen, T. Li, C. Chen, W. Kong, M. Jiao et al., Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15(7), 11244 (2021).

    [60] W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30(39), 1801934 (2018).

    [61] Y. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 55(48), 15120 (2016).

    [62] X. Li, Z. Wang, H. Lu, C. Zhao, H. Na et al., Electrochemical properties of sulfonated peek used for ion exchange membranes. J. Membr. Sci. 254(1–2), 147 (2005).

    [63] L. Cao, W. Guo, W. Ma, L. Wang, F. Xia et al., Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environ. Sci. 4(6), 2259 (2011).

    [64] Z. Zhang, L. Wen, L. Jiang, Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6(7), 622 (2021).

    [65] X. Tong, S. Liu, J. Crittenden, Y. Chen, Nanofluidic membranes to address the challenges of salinity gradient power harvesting. ACS Nano 15(4), 5838 (2021).

    [66] J.G. Hong, W. Zhang, J. Luo, Y. Chen, Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions. Appl. Energy 110, 244 (2013).

    [67] R.H. Stokes, R.A. Robinson, Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70(5), 1870 (1948).

    [68] Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian et al., Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horizons. 7(10), 2702 (2020).

    [69] P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10(9), 1923 (2017).

    [70] Y. Liu, L. Yeh, M. Zheng, K.C.W. Wu, Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci. Adv. 7(10), abe9924 (2021).

    Nan He, Haonan Wang, Haotian Zhang, Bo Jiang, Dawei Tang, Lin Li. Ionization Engineering of Hydrogels Enables Highly Efficient Salt-Impeded Solar Evaporation and Night-Time Electricity Harvesting[J]. Nano-Micro Letters, 2024, 16(1): 008
    Download Citation