• Chinese Optics Letters
  • Vol. 22, Issue 9, 090011 (2024)
Yuxuan He1, Qiang Wang2, Xu Han1, Zhonghan Wang1..., Yuxi Fang1, Wenpu Geng1, Fei Yang3,4, Zhongqi Pan5 and Yang Yue3,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Angle AI (Tianjin) Technology Co., Ltd., Tianjin 300450, China
  • 3School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • 4China Academy of Space Technology (Xi’an), Xi’an 710000, China
  • 5Department of Electrical & Computer Engineering, University of Louisiana at Lafayette, Lafayette 70504, USA
  • show less
    DOI: 10.3788/COL202422.090011 Cite this Article Set citation alerts
    Yuxuan He, Qiang Wang, Xu Han, Zhonghan Wang, Yuxi Fang, Wenpu Geng, Fei Yang, Zhongqi Pan, Yang Yue, "Integrated solid-state lidar employing orthogonal polarizations and counterpropagation [Invited]," Chin. Opt. Lett. 22, 090011 (2024) Copy Citation Text show less
    References

    [1] C. de Galarreta, A. Alexeev, Y. Au et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater., 28, 1704993(2018).

    [2] I. Kim, R. Martins, J. Jang et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508(2021).

    [3] S. So, N. Park, H. Lee et al. New trends in nanophotonics. Nanophotonics, 9, 983(2020).

    [4] Y.-P. Chang, C.-N. Liu, Z. Pei et al. New scheme of LiDAR-embedded smart laser headlight for autonomous vehicles. Opt. Express, 27, A1481(2019).

    [5] P. García-Gómez, S. Royo, N. Rodrigo et al. Geometric model and calibration method for a solid-state LiDAR. Sensors, 20, 2898(2020).

    [6] R. Whyte, L. Streeter, M. Cree et al. Application of Lidar techniques to time-of-flight range imaging. Appl. Opt., 54, 9654(2015).

    [7] X. Zhang, J. Pouls, M. Wu. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Opt. Express, 27, 9965(2019).

    [8] P. Dong, Q. Chen. LiDAR Remote Sensing and Applications(2018).

    [9] A. Haider, Y. Cho, M. Pigniczki et al. Performance evaluation of MEMS-based automotive LiDAR sensor and its simulation model as per ASTM E3125-17 standard. Sensors, 23, 3113(2023).

    [10] H. Jang, J. Kim, G. Kim et al. Simultaneous distance and vibration mapping of FMCW-LiDAR with akinetic external cavity diode laser. Opt. Lasers Eng., 160, 107283(2023).

    [11] F. Zhang, L. Yi, X. Qu. Simultaneous measurements of velocity and distance via a dual-path FMCW Lidar system. Opt. Commun., 474, 126066(2020).

    [12] D. F. Pierrottet, F. Amzajerdian, L. Petway et al. Linear FMCW laser radar for precision range and vector velocity measurements. MRS Online Proc. Library, 1076, 10760406(2008).

    [13] Y. Li, J. Ibanez-Guzman. Lidar for autonomous driving: the principles, challenges, and trends for automotive Lidar and perception systems. IEEE Signal Process. Mag., 37, 50(2020).

    [14] J. Riemensberger, A. Lukashchuk, M. Karpov et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164(2020).

    [15] M. Zadka, Y. Chang, A. Mohanty et al. On-chip platform for a phased array with minimal beam divergence and wide field-of-view. Opt. Express, 26, 2528(2018).

    [16] V. Baier, M. Schardt, M. Fink et al. MEMS-scanner testbench for high field of view LiDAR applications. Sensors, 22, 39(2022).

    [17] D. Hutchison, J. Sun, J. Doylend et al. High-resolution aliasing-free optical beam steering. Optica, 3, 887(2016).

    [18] M. Amann, T. Bosch, M. Lescure et al. Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng., 40, 10(2001).

    [19] L. Zhang, Y. Li, B. Chen et al. Two-dimensional multi-layered SiN-on-SOI optical phased array with wide-scanning and long-distance ranging. Opt. Express, 30, 5008(2022).

    [20] C. Im, S. Kim, K. Lee et al. Hybrid integrated silicon nitride-polymer optical phased array for efficient light detection and ranging. J. Lightwave Technol., 39, 4402(2021).

    [21] Z. Li, Z. Zang, Y. Han et al. Solid-state FMCW LiDAR with two-dimensional spectral scanning using a virtually imaged phased array. Opt. Express, 29, 16547(2021).

    [22] R. Lange, P. Seitz. Solid-state time-of-flight range camera. IEEE J. Quantum Electron., 37, 390(2001).

    [23] N. Li, C. Ho, J. Xue et al. A progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors. Laser Photonics Rev., 16, 2100511(2022).

    [24] C. Poulton, A. Yaacobi, D. Cole et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett., 42, 4091(2017).

    [25] A. M. Wallace, A. Halimi, G. S. Buller. Full waveform LiDAR for adverse weather conditions. IEEE Trans. Veh. Technol., 69, 7064(2020).

    [26] X. Zhang, K. Kwon, J. Henriksson et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature, 603, 253(2022).

    [27] S. Royo, M. Ballesta-Garcia. An overview of Lidar imaging systems for autonomous vehicles. Appl. Sci., 9, 4093(2019).

    [28] M. J. R. Heck. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics, 6, 93(2017).

    [29] J. Sun, E. Timurdogan, A. Yaacobi et al. Large-scale nanophotonic phased array. Nature, 493, 195(2013).

    [30] D. Hutchison, J. Sun, J. Doylend et al. High-resolution aliasing-free optical beam steering. Optica, 3, 887(2016).

    [31] J. Hulme, J. Doylend, M. Heck et al. Fully integrated hybrid silicon two-dimensional beam scanner. Opt. Express, 23, 5861(2015).

    [32] S. Chung, H. Abediasl, H. Hashemi. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid-State Circuits, 53, 275(2018).

    [33] D. Liang, W. Li, X. Wang et al. Grating lobe-free silicon optical phased array with periodically bending modulation of dense antennas. Opt. Express, 31, 11423(2023).

    [34] J. Komma, C. Schwarz, G. Hofmann et al. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett., 101, 041905(2012).

    [35] S. Chung, M. Nakai, H. Hashemi. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express, 27, 13430(2019).

    [36] S. K. Selvaraja, P. Jaenen, W. Bogaerts et al. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J. Lightwave Technol., 27, 4076(2009).

    [37] D. Vermeulen, S. Selvaraja, G. Verheyen et al. High-efficiency silicon-on-insulator fiber-to-chip grating couplers using a silicon overlay. Opt. Express, 18, 18278(2010).

    [38] K. V. Acoleyen, H. Rogier, R. Baets. Two-dimensional optical phased array antenna on silicon-on-insulator. Opt. Express, 18, 13655(2010).

    [39] G. Sinatkas, A. Pitilakis, D. Zografopoulos et al. Transparent conducting oxide electro-optic modulators on silicon platforms: a comprehensive study based on the drift-diffusion semiconductor model. J. Appl. Phys., 121, 023109(2017).

    [40] S. Li, X. Xu, R. Veetil et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087(2019).

    [41] C. Haffner, D. Chelladurai, Y. Fedoryshyn et al. Low-loss plasmon-assisted electro-optic modulator. Nature, 556, 483(2018).

    [42] R. Morris, J. C. Jones, M. Nagaraj. Liquid crystal devices for beam steering applications. Micromachines, 12, 247(2021).

    [43] X. Zhang, C. Chung, A. Hosseini et al. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J. Lightwave Technol., 34, 2941(2016).

    [44] S. Zhu, T. Hu, Y. Li et al. CMOS-compatible integrated silicon nitride optical phase array for electrically tunable off-chip laser beam steering. Electron Devices Technology and Manufacturing Conference (EDTM), 228(2019).

    [45] C. Rogers, A. Piggott, D. Thomson et al. A universal 3D imaging sensor on a silicon photonics platform. Nature, 590, 256(2021).

    [46] K. Van Acoleyen, W. Bogaerts, J. Jágerská et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett., 34, 1477(2009).

    [47] K. Sayyah, O. Efimov, P. Patterson et al. Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers. Opt. Express, 23, 19405(2015).

    [48] J. Doylend, M. Heck, J. Bovington et al. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express, 19, 21595(2011).

    [49] H. Abe, M. Takeuchi, G. Takeuchi et al. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide. Opt. Express, 26, 9389(2018).

    [50] A. Forouzmand, H. Mosallaei. Tunable two dimensional optical beam steering with reconfigurable indium tin oxide plasmonic reflectarray metasurface. J. Opt., 18, 125003(2016).

    [51] N. Tyler, D. Fowler, S. Malhouitre et al. SIN integrated optical phased arrays for two-dimensional beam steering at a single near-infrared wavelength. Opt. Express, 27, 5851(2019).

    [52] C. V. Poulton, M. J. Byrd, P. Russo et al. “Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 1(2019).

    [53] H. Ito, T. Tatebe, H. Abe et al. Wavelength-division multiplexing Si photonic crystal beam steering device for high-throughput parallel sensing. Opt. Express, 26, 26145(2018).

    [54] G. Pan, C. Xu, Y. Xie et al. Ultra-compact electrically controlled beam steering chip based on coherently coupled VCSEL array directly integrated with optical phased array. Opt. Express, 27, 13910(2019).

    [55] W. Guo, P. R. A. Binetti, C. Althouse et al. Two-dimensional optical beam steering with InP-based photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 19, 6100212(2013).

    [56] P. A. K. Yepez, U. Scholz, A. Zimmermann. Temperature dependence of the steering angles of a silicon photonic optical phased array. IEEE Photonics J., 12, 1(2020).

    [57] S. Kim, J. You, Y. Ha et al. Thermo-optic control of the longitudinal radiation angle in a Silicon-based optical phased array. Opt. Lett., 44, 411(2019).

    [58] X. Yan, J. Chen, D. Dai et al. Polarization multiplexing silicon-photonic optical phased array for 2D wide-angle optical beam steering. IEEE Photonics J., 13, 6600506(2021).

    [59] X. Guo, Z. Li, H. Chen et al. Two-dimensional silicon optical phased array with large field of view. Opt. Express, 30, 28049(2022).

    [60] T. Fu, X. Yan, X. Zhang et al. Inverse-designed polarization multiplexing non-uniformly distributed gratings for one-dimensional beam steering. Opt. Express, 31, 6051(2023).

    [61] S. Zhao, D. Lian, J. Chen et al. Polarization multiplexing silicon photonic optical phased array with a wide scanning range. Opt. Lett., 48, 6092(2023).

    [62] H. Ito, Y. Kusunoki, J. Maeda et al. Wide beam steering by slow-light waveguide gratings and a prism lens. Optica, 7, 47(2020).

    [63] Y. Guo, Y. Guo, C. Li et al. Bidirectional wide-angle waveguide grating antennas with flat-top far-field patterns for optical phased arrays. Opt. Express, 31, 9072(2023).

    [64] Y. He, Q. Wang, X. Han et al. Solid-state Lidar with wide steering angle using counter-propagating beams. Sci. Rep., 13, 15945(2023).

    [65] X. Han, Q. Wang, Z. Wang et al. Solid-state photonics-based Lidar with large beam-steering angle by seamlessly merging two orthogonally polarized beams. IEEE J. Sel. Top. Quantum Electron., 27, 8300608(2021).

    [66] Z. Wang, Q. Wang, X. Han et al. A low-cost high-resolution solid-state lidar with wavelength division multiplexed components and interleaved orthogonal polarization grating couplers. J. Lightwave Technol., 40, 2072(2022).

    [67] S. Zhao, J. Chen, Y. Shi. Dual polarization and bi-directional silicon-photonic optical phased array with large scanning range. IEEE Photonics J., 14, 6620905(2022).

    [68] Y. He, Q. Wang, W. Geng et al. Simultaneous enhancement of viewing angle and angular resolution of integrated lidar with bidirectional signals and orthogonal polarizations. IEEE Access, 12, 22122(2024).

    Yuxuan He, Qiang Wang, Xu Han, Zhonghan Wang, Yuxi Fang, Wenpu Geng, Fei Yang, Zhongqi Pan, Yang Yue, "Integrated solid-state lidar employing orthogonal polarizations and counterpropagation [Invited]," Chin. Opt. Lett. 22, 090011 (2024)
    Download Citation