• Photonics Research
  • Vol. 9, Issue 10, 2046 (2021)
Hongqiang Xie1、2、†, Hongbin Lei2、†, Guihua Li2、3, Jinping Yao4, Qian Zhang2, Xiaowei Wang2, Jing Zhao2, Zhiming Chen1, Ya Cheng5, and Zengxiu Zhao2、*
Author Affiliations
  • 1School of Science, East China University of Technology, Nanchang 330013, China
  • 2Department of Physics, National University of Defense Technology, Changsha 410073, China
  • 3School of Science, East China Jiaotong University, Nanchang 330013, China
  • 4State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai 201800, China
  • 5State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • show less
    DOI: 10.1364/PRJ.434378 Cite this Article Set citation alerts
    Hongqiang Xie, Hongbin Lei, Guihua Li, Jinping Yao, Qian Zhang, Xiaowei Wang, Jing Zhao, Zhiming Chen, Ya Cheng, Zengxiu Zhao. Controlling the collective radiative decay of molecular ions in strong laser fields[J]. Photonics Research, 2021, 9(10): 2046 Copy Citation Text show less
    References

    [1] T. Popmintchev, M. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. Schrauth, A. Gaeta, C. García, L. Plaja, A. Becker, A. Becker, M. Murnane, H. Kapteyn. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287-1291(2012).

    [2] L. He, G. Yuan, K. Wang, W. Hua, C. Yu, C. Jin. Optimization of temporal gate by two-color chirped lasers for the generation of isolated attosecond pulse in soft X rays. Photon. Res., 7, 1407-1415(2019).

    [3] J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, Z. Xu. High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A, 84, 051802(2011).

    [4] J. Zhao, W. Liu, S. Li, D. Lu, Y. Zhhang, Y. Peng, Y. Zhu, S. Zhuang. Clue to a thorough understanding of terahertz pulse generation by femtosecond laser filamentation. Photon. Res., 6, 296-306(2018).

    [5] C. Bostedt, E. Eremina, D. Rupp, M. Adolph, H. Thomas, M. Hoener, A. R. B. de Castro, J. Tiggesbäumker, K.-H. Meiwes-Broer, T. Laarmann, H. Wabnitz, E. Plönjes, R. Treusch, J. R. Schneider, T. Möller. Ultrafast X-ray scattering of xenon nanoparticles: imaging transient states of matter. Phys. Rev. Lett., 108, 093401(2012).

    [6] A. S. Ashik, C. F. O’Donnell, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, C. Pedersen. Mid-infrared upconversion imaging using femtosecond pulses. Photon. Res., 7, 783-791(2019).

    [7] H. Xu, Y. Cheng, S.-L. Chin, H.-B. Sun. Femtosecond laser ionization and fragmentation of molecules for environmental sensing. Laser Photon. Rev., 9, 275-293(2015).

    [8] S. Chen, Z. Feng, J. Li, W. Tan, L.-H. Du, J. Cai, Y. Ma, K. He, H. Ding, Z.-H. Zhai, Z. Li, C.-W. Qiu, X.-C. Zhang, L. Zhu. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl., 9, 99(2020).

    [9] J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, Z. Xu. Impulsive rotational Raman scattering of N2 by a remote ‘air lase’ in femtosecond laser filament. Opt. Lett., 39, 2250-2253(2014).

    [10] X. Zhao, S. Nolte, R. Ackermann. Lasing of N2+ induced by filamentation in air as a probe for femtosecond coherent anti-Stokes Raman scattering. Opt. Lett., 45, 3661-3664(2020).

    [11] G. Li, H. Xie, Q. Zhang, H. Lei, X. Zhou, X. Wang, Z. Chen, Z. Zhao. Enhanced resonant vibrational Raman scattering of N2+ induced by self-seeding ionic lasers created in polarization-modulated intense laser fields. Opt. Lett., 45, 5616-5619(2020).

    [12] H. Xu, E. Lötstedt, A. Iwasaki, K. Yamanouchi. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling. Nat. Commun., 6, 8347(2015).

    [13] J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, Y. Cheng. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields. Phys. Rev. Lett., 116, 143007(2016).

    [14] A. Mysyrowicz, R. Danylo, A. Houard, V. Tikhonchuk, X. Zhang, Z. Fan, Q. Liang, S. Zhuang, L. Yuan, Y. Liu. Lasing without population inversion in N2+. APL Photon., 4, 110807(2019).

    [15] A. Zhang, Q. Liang, M. Lei, L. Yuan, Y. Liu, Z. Fan, X. Zhang, S. Zhuang, C. Wu, Q. Gong, H. Jiang. Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses. Opt. Express, 27, 12638-12646(2019).

    [16] J. Chen, J. Yao, H. Zhang, Z. Liu, B. Xu, W. Chu, L. Qiao, Z. Wang, J. Fatome, O. Faucher, C. Wu, Y. Cheng. Electronic-coherence-mediated molecular nitrogen-ion lasing in a strong laser field. Phys. Rev. A, 100, 031402(2019).

    [17] B. Xu, J. Yao, Y. Wan, J. Chen, Z. Liu, F. Zhang, W. Chu, Y. Cheng. Vibrational Raman scattering from coherently excited molecular ions in a strong laser field. Opt. Express, 27, 018262(2019).

    [18] H. Xie, H. Lei, G. Li, Q. Zhang, X. Wang, J. Zhao, Z. Chen, J. Yao, Y. Cheng, Z. Zhao. Role of rotational coherence in femtosecond-pulse-driven nitrogen ion lasing. Phys. Rev. Res., 2, 023329(2020).

    [19] M. Richter, M. Lytova, F. Morales, S. Haessler, O. Smirnova, M. Spanner, M. Ivanov. Rotational quantum beat lasing without inversion. Optica, 7, 586-592(2020).

    [20] L. Arissian, B. Kamer, A. Rastegari, D. Villeneuve, J. Diels. Transient gain from N2+ in light filaments. Phys. Rev. A, 98, 053438(2018).

    [21] J. Yao, L. Wang, J. Chen, Y. Wan, Z. Zhang, F. Zhang, L. Qiao, S. Yu, B. Fu, Z. Zhao, C. Wu, V. Yakovlev, L. Yuan, X. Chen, Y. Cheng. Photon retention in coherently excited nitrogen ions. Sci. Bull., 66, 1511-1517(2021).

    [22] R. Danylo, G. Lambert, Y. Liu, V. Tikhonchuk, A. Houard, A. Mysyrowicz. Quantum erasing of laser emission in N2+. Opt. Lett., 45, 4670-4673(2020).

    [23] G. Li, C. Jing, B. Zeng, H. Xie, J. Yao, W. Chu, J. Ni, H. Zhang, H. Xu, Y. Cheng, Z. Xu. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization. Phys. Rev. A, 89, 033833(2014).

    [24] Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, A. Mysyrowicz. Recollision-induced superradiance of ionized nitrogen molecules. Phys. Rev. Lett., 115, 133203(2015).

    [25] H. Xu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi. Alignment-dependent population inversion in N2+ in intense few-cycle laser fields. Phys. Rev. A, 96, 041401(2017).

    [26] J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. Chin, Y. Cheng, Z. Xu. Remote creation of coherent emissions in air with two-color ultrafast laser pulses. New J. Phys., 15, 023046(2013).

    [27] W. Zheng, Z. Miao, L. Zhang, Y. Wang, C. Dai, A. Zhang, H. Jiang, Q. Gong, C. Wu. Enhanced coherent emission from ionized nitrogen molecules by femtosecond laser pulses. J. Phys. Chem. Lett., 10, 6598-6603(2019).

    [28] T. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [29] N. Carlson, D. Jackson, A. Schawlow. Superradiance triggering spectroscopy. Opt. Commun., 32, 350-354(1980).

    [30] R. G. Brewer, R. L. Shoemaker. Optical free induction decay. Phys. Rev. A, 6, 2001-2007(1976).

    [31] J. MacGillivray, M. Feld. Theory of superradiance in an extended, optically thick medium. Phys. Rev. A, 14, 1169-1189(1976).

    [32] H. Li, M. Hou, H. Zang, Y. Fu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, H. Xu. Significant enhancement of N2+ lasing by polarization-modulated ultrashort laser pulses. Phys. Rev. Lett., 122, 013202(2019).

    [33] H. Xie, Q. Zhang, G. Li, X. Wang, L. Wang, Z. Chen, H. Lei, Z. Zhao. Vibrational population transfer between electronic states of N2+ in polarization-modulated intense laser fields. Phys. Rev. A, 100, 053419(2019).

    [34] H. Li, E. Lötstedt, H. Li, Y. Zhou, N. Dong, L. Deng, P. Lu, T. Ando, A. Iwasaki, Y. Fu, S. Wang, J. Wu, K. Yamanouchi, H. Xu. Giant enhancement of air lasing by complete population inversion in N2+. Phys. Rev. Lett., 125, 053201(2020).

    [35] M. Benedict, A. Ermolaev, V. Malyshev, I. Sokolov, E. Trifonov. Super-Radiance: Multiatomic Coherent Emission(1996).

    [36] Q. Zhang, H. Xie, G. Li, X. Wang, H. Lei, J. Zhao, Z. Chen, J. Yao, Y. Cheng, Z. Zhao. Sub-cycle coherent control of ionic dynamics via transient ionization injection. Commun. Phys., 3, 50(2020).

    [37] H. Lei, G. Li, H. Xie, Q. Zhang, X. Wang, J. Zhao, Z. Chen, Z. Zhao. Mechanism and control of rotational coherence in femtosecond laser-driven N2+. Opt. Express, 28, 22829-22843(2020).

    [38] R. Jodoin, L. Mandel. Superradiance and optical free induction. Phys. Rev. A, 10, 1898-1903(1974).

    [39] M. Scully, M. Zubairy. Quantum Optics(1997).

    [40] M. Houde, F. Rajabi, B. M. Gaensler, A. Mathews, V. Tranchant. Triggered superradiance and fast radio bursts. Mon. Not. R. Astron. Soc., 482, 5492-5499(2019).

    [41] J. Maki, M. Malcuit, M. Raymer, R. Boyd. Influence of collisional dephasing processes on superfluorescence. Phys. Rev. A, 40, 5135-5142(1989).

    [42] M. Malcuit, J. Maki, D. Simkin, R. Boyd. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett., 59, 1189-1192(1987).

    Hongqiang Xie, Hongbin Lei, Guihua Li, Jinping Yao, Qian Zhang, Xiaowei Wang, Jing Zhao, Zhiming Chen, Ya Cheng, Zengxiu Zhao. Controlling the collective radiative decay of molecular ions in strong laser fields[J]. Photonics Research, 2021, 9(10): 2046
    Download Citation