• Matter and Radiation at Extremes
  • Vol. 3, Issue 5, 227 (2018)
C. Martinez-Flores* and R. Cabrera-Trujillo
Author Affiliations
  • Instituto de Ciencias Físicas, Universidad Nacional Autonoma de Mexico, Ap. Postal 43-8, Cuernavaca, Morelos, 62251, Mexico
  • show less
    DOI: Cite this Article
    C. Martinez-Flores, R. Cabrera-Trujillo. Dipole and generalized oscillator strength derived electronic properties of an endohedral hydrogen atom embedded in a Debye-H ckel plasma[J]. Matter and Radiation at Extremes, 2018, 3(5): 227 Copy Citation Text show less
    References

    [1] D. Salzmann (Ed.), Atomic Physics in Hot Plasmas, Oxford University Press, Oxford, 1998.

    [2] R. Janev, S. Zhang, J. Wang, Review of quantum collision dynamics in debye plasmas, Matter Radiat. Extrem. 1 (5) (2016) 237-248, https://doi.org/10.1016/j.mre.2016.10.002.

    [3] P.S. Committee (Ed.), Plasma Science: From Fundamental Research to Technological Applications, first ed., National Academies Press, Washington, DC, 1995.

    [4] K. Nishikawa, M. Wakatani (Eds.), Plasma Physics: Basic Theory with Fusion Applications, third ed., Springer-Verlag Berlin Heidelberg, Switzerland, 2000 https://doi.org/10.1007/978-3-662-04078-2. http://www.springer.com/us/book/9783540652854.

    [5] O.V. Penkov, M. Khadem, W.-S. Lim, D.-E. Kim, A review of recent applications of atmospheric pressure plasma jets for materials processing, J. Coating Technol. Res. 12 (2) (2015) 225-235, https://doi.org/10.1007/s11998-014-9638-z.

    [6] Y. Kuramitsu, Y. Sakawa, T. Morita, T. Ide, K. Nishio, et al., Laboratory investigations on the origins of cosmic rays, Plasma Phys. Contr. Fusion 54 (12) (2012) 124049, https://doi.org/10.1088/0741-3335/54/12/124049.http://stacks.iop.org/0741-3335/54/i=12/a=124049.

    [7] M.S. Murillo, J.C. Weisheit, Dense plasmas, screened interactions, and atomic ionization, Phys. Rep. 302 (1) (1998) 1-65, https://doi.org/10.1016/S0370-1573(98)00017-9.

    [8] A. Sil, S. Canuto, P. Mukherjee, Spectroscopy of confined atomic systems: effect of plasma, Adv. Quant. Chem. 58 (2009) 115-175, https://doi.org/10.1016/S0065-3276(09)00708-4. http://www.sciencedirect.com/science/article/pii/S0065327609007084.

    [9] E. Huckel, P. Debye, The theory of electrolytes: I. Lowering of freezing point and related phenomena, Phys. Z 24 (1923) 185-206.

    [10] Y.Y. Qi, J.G. Wang, R.K. Janev, Photoionization of hydrogen-like ions in dense quantum plasmas, Phys. Plasmas 24 (6) (2017) 062110, https://doi.org/10.1063/1.4985658.

    [11] L.G. Stanton, M.S. Murillo, Unified description of linear screening in dense plasmas, Phys. Rev. E 91 (2015) 033104, https://doi.org/10.1103/PhysRevE.91.033104.

    [12] G.P. Zhao, L. Liu, J.G. Wang, R.K. Janev, Spectral properties of hydrogen-like ions in finite-temperature quantum plasmas, Phys. Plasmas 24 (5) (2017) 053509, https://doi.org/10.1063/1.4982658.

    [13] Y.Y. Qi, J.G. Wang, R.K. Janev, Dynamics of photoionization of hydrogenlike ions in debye plasmas, Phys. Rev. A 80 (2009) 063404, https://doi.org/10.1103/PhysRevA.80.063404.

    [14] C.Y. Lin, Y.K. Ho, Effects of screened Coulomb (Yukawa) and exponential-cosine-screened Coulomb potentials on photoionization of H and Het, Eur. Phys. J. D 57 (1) (2010) 21-26, https://doi.org/10.1140/epjd/e2010-00009-8.

    [15] T.N. Chang, T.K. Fang, Atomic photoionization in a changing plasma environment, Phys. Rev. A 88 (2013) 023406, https://doi.org/10.1103/PhysRevA.88.023406.

    [16] Y.Y. Qi, J.G. Wang, R.K. Janev, Static dipole polarizability of hydrogenlike ions in Debye plasmas, Phys. Rev. A 80 (2009) 032502, https://doi.org/10.1103/PhysRevA.80.032502.

    [17] M. Das, Transition energies and polarizabilities of hydrogen like ions in plasma, Phys. Plasmas 19 (9) (2012) 092707, https://doi.org/10.1063/1.4754716.

    [18] H.W. Li, S. Kar, Polarizabilities of Li and Na in debye plasmas, Phys. Plasmas 19 (7) (2012) 073303, https://doi.org/10.1063/1.4739229.

    [19] H.-W. Li, S. Kar, P. Jiang, Calculations of dynamic dipole polarizabilities of Li and Na atoms in Debye plasma using the model potential technique, Int. J. Quant. Chem. 113 (10) (2013) 1493-1497, https://doi.org/10.1002/qua.24347.

    [20] D.H.H. Hoffmann, K. Weyrich, H. Wahl, D. Gardees, R. Bimbot, C. Fleurier, Energy loss of heavy ions in a plasma target, Phys. Rev. A 42 (1990) 2313-2321, https://doi.org/10.1103/PhysRevA.42.2313.

    [21] A.B. Zylstra, J.A. Frenje, P.E. Grabowski, C.K. Li, G.W. Collins, et al., Measurement of charged-particle stopping in warm dense plasma, Phys. Rev. Lett. 114 (2015) 215002, https://doi.org/10.1103/PhysRevLett.114.215002.

    [22] G. Xu, M.D. Barriga-Carrasco, A. Blazevic, B. Borovkov, D. Casas, et al., Determination of hydrogen density by swift heavy ions, Phys. Rev. Lett. 119 (2017) 204801, https://doi.org/10.1103/PhysRevLett.119.204801.

    [23] K.D. Sen (Ed.), Electronic Structure of Quantum Confined Atoms and Molecules, Springer International Publishing, Switzerland, 2014, https://doi.org/10.1007/978-3-319-09982-8.

    [24] R.B. Ross, C.M. Cardona, D.M. Guldi, S.G. Sankaranarayanan, M.O. Reese, et al., Endohedral fullerenes for organic photovoltaic devices, Nat. Mater. 8 (3) (2014) 208-212, https://doi.org/10.1038/nmat2379.

    [25] S.Ornes,Core concept: quantumdots, Proc.Natl.Acad. Sci.Unit. StatesAm. 113 (11) (2016) 2796-2797, https://doi.org/10.1073/pnas.1601852113.http://www.pnas.org/content/113/11/2796.short.

    [26] O.V. Pupysheva, A.A. Farajian, B.I. Yakobson, Fullerene nanocage capacity for hydrogen storage, Nano Lett. 8 (3) (2008) 767-774, https://doi.org/10.1021/nl071436g pMID: 17924697. arXiv.

    [27] J.A. Teprovich, A.L. Washington, J. Dixon, P.A. Ward, J.H. Christian, et al., Investigation of hydrogen induced fluorescence in C60 and its potential use in luminescence down shifting applications, Nanoscale 8 (2016) 18760-18770, https://doi.org/10.1039/C6NR05998H.

    [28] W. Jaskolski, Confined many-electron systems, Phys. Rep. 271 (1) (1996) 1-66, https://doi.org/10.1016/0370-1573(95)00070-4. http://www.sciencedirect.com/science/article/pii/0370157395000704.

    [29] J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi, The filling of shells in compressed atoms, J. Phys. B Atomic Mol. Opt. Phys. 33 (2) (2000) 251, https://doi.org/10.1088/0953-4075/33/2/310. http://stacks.iop.org/0953-4075/33/i=2/a=310.

    [30] S.A. Cruz, J. Sabin, E. Brandas (Eds.), Advances in quantum chemistry, vol. 57, Elsevier, Amsterdam, 2009. http://www.sciencedirect.com/science/bookseries/00653276/57.

    [31] S.A. Cruz, J. Sabin, E. Brandas (Eds.), Advances in Quantum Chemistry, vol. 58, Elsevier, Amsterdam, 2009. http://www.sciencedirect.com/science/bookseries/00653276/58.

    [32] R.D. Woods, D.S. Saxon, Diffuse surface optical model for nucleonnuclei scattering, Phys. Rev. 95 (1954) 577-578, https://doi.org/10.1103/PhysRev.95.577.

    [33] V.K. Dolmatov, J.L. King, J.C. Oglesby, Diffuse versus square-well confining potentials in modelling A@C60 atoms, J. Phys. B Atom. Mol. Opt. Phys. 45 (10) (2012) 105102. http://stacks.iop.org/0953-4075/45/i=10/a=105102.

    [34] M.Y. Amusia, A.S. Baltenkov, L.V. Chernysheva, Z. Felfli, A.Z. Msezane, Dramatic distortion of the 4d giant resonance by the C60 fullerene shell, J. Phys. B Atom. Mol. Opt. Phys. 38 (10) (2005) L169.http://stacks.iop.org/0953-4075/38/i=10/a=L06.

    [35] V. Dolmatov, Photoionization of atoms encaged in spherical fullerenes, in: Advances in Quantum Chemistry, vol. 58, Academic Press, 2009, pp. 13-68, https://doi.org/10.1016/S0065-3276(09)00706-0. http://www.sciencedirect.com/science/article/pii/S0065327609007060.

    [36] C.Y. Lin, Y.K. Ho, Photoionization of atoms encapsulated by cages using the power-exponential potential, J. Phys. B Atom. Mol. Opt. Phys. 45(14) (2012) 145001. http://stacks.iop.org/0953-4075/45/i=14/a=145001.

    [37] C.Y. Lin, Y.K. Ho, Photoionization of endohedral atoms in fullerene cages, Few Body Syst. 54 (1) (2013) 425-429, https://doi.org/10.1007/s00601-012-0405-3.

    [38] C.Y. Lin, Y.K. Ho, Photoionization cross sections of hydrogen impurities in spherical quantum dots using the finite-element discrete-variable representation, Phys. Rev. A 84 (2011) 023407, https://doi.org/10.1103/PhysRevA.84.023407.

    [39] E.K. Campbell, M. Holz, D. Gerlich, J.P. Maier, Laboratory confirmation of C60t as the Carrier of two diffuse interstellar bands, Nature 523 (2015) 322, https://doi.org/10.1038/nature14566.

    [40] C. Teske, Y. Liu, S. Blaes, J. Jacoby, Electron density and plasma dynamics of a spherical theta pinch, Phys. Plasmas 19 (3) (2012) 033505, https://doi.org/10.1063/1.3690107 arXiv.

    [41] R. Cabrera-Trujillo, S.A. Cruz, Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen, Phys. Rev. A 87 (2013) 012502, https://doi.org/10.1103/PhysRevA.87.012502.

    [42] S. Koonin, D.C. Meredith, Computational Physics: Fortran Version, Westview Press, 1998.

    [43] H.A. Bethe, R. Jackiw (Eds.), Intermediate Quantum Mechanics, third ed., Westview Press, Boulder, Colorado, 1997. EE.UU.

    [44] M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules-the bethe theory revisited, Rev. Mod. Phys. 43 (1971) 297-347, https://doi.org/10.1103/RevModPhys.43.297.

    [45] H. Friedrich (Ed.), Theoretical Atomic Physics, third ed., Springer-Verlag Berlin Heidelberg, 2006 https://doi.org/10.1007/3-540-29278-0.

    [46] L.M. Ugray, R.C. Shiell, Elucidating Fermi's golden rule via bound-tobound transitions in a confined hydrogen atom, Am. J. Phys. 81 (3)(2013) 206-210, https://doi.org/10.1119/1.4773564.

    [47] H. Bethe, Zur theorie des durchgangs schneller korpuskularstrahlen durch materie, Annalen der Physik 397 (3) (1930) 325-400, https://doi.org/10.1002/andp.19303970303.

    [48] Y.B. Xu, M.Q. Tan, U. Becker, Oscillations in the photoionization cross section of C60, Phys. Rev. Lett. 76 (1996) 3538-3541, https://doi.org/10.1103/PhysRevLett.76.3538.

    [49] M.F. Hasoglu, H.-L. Zhou, S.T. Manson, Correlation study of endohedrally confined alkaline-earth-metal atoms (A@C60), Phys. Rev. A 93(2016) 022512, https://doi.org/10.1103/PhysRevA.93.022512.

    [50] S. Kang, Y.-C. Yang, J. He, F.-Q. Xiong, N. Xu, The hydrogen atom confined in both debye screening potential and impenetrable spherical box, Cent. Eur. J. Phys. 11 (5) (2013) 584-593, https://doi.org/10.2478/s11534-013-0230-4.

    [51] S. Lumb, S. Lumb, V. Prasad, Photoexcitation and ionization of a hydrogen atom confined by a combined effect of a spherical box and debye plasma, Phys. Lett. A 379 (18) (2015) 1263e1269. https://doi.org/10.1016/j.physleta.2015.02.041. http://www.sciencedirect.com/science/article/pii/S0375960115002145.

    [52] S. Lumb, S. Lumb, V. Nautiyal, Photoexcitation and ionization of hydrogen atom confined in debye environment, Eur. Phys. J. D 69 (7)(2015) 176, https://doi.org/10.1140/epjd/e2015-60136-2.

    [53] B. Saha, P.K. Mukherjee, G.H.F. Diercksen, Energy levels and structural properties of compressed hydrogen atom under Debye screening, Astron. Astrophys. 396 (2002) 337, https://doi.org/10.1051/0004-6361: 20021350.

    [54] J.W. Cooper, Photoionization from outer atomic subshells. A model study, Phys. Rev. 128 (1962) 681-693, https://doi.org/10.1103/PhysRev.128.681.

    [55] J.W. Cooper, Interaction of maxima in the absorption of soft X rays, Phys. Rev. Lett. 13 (1964) 762-764, https://doi.org/10.1103/PhysRevLett.13.762.

    [56] M.Y. Amusia, Photoionization and vacancy decay of endohedral atoms, J. Electron. Spectrosc. Relat. Phenom. 161 (1) (2007) 112-120, https://doi.org/10.1016/j.elspec.2007.04.004.

    [57] R. Cabrera-Trujillo, S. Cruz, Accurate evaluation of pressure effects on the electronic stopping cross section and mean excitation energy of atomic hydrogen beyond the bethe approximation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 320 (2014)51-56, https://doi.org/10.1016/j.nimb.2013.12.011. http://www.sciencedirect.com/science/article/pii/S0168583X13011725.

    [58] H. Bichsel, Stopping power of hydrogen atoms, Phys. Rev. A 43 (1991)4030-4031, https://doi.org/10.1103/PhysRevA.43.4030.

    C. Martinez-Flores, R. Cabrera-Trujillo. Dipole and generalized oscillator strength derived electronic properties of an endohedral hydrogen atom embedded in a Debye-H ckel plasma[J]. Matter and Radiation at Extremes, 2018, 3(5): 227
    Download Citation