[1] SONG Yonghua, YANG Yuexi, HU Zechun. Power Syst Technol, 2011, 35(4): 1-7.
[2] XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renew Sustain Energy Rev, 2021, 150: 111437.
[3] WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chem Soc Rev, 2020, 49(5): 1569-1614.
[4] LI J Y, LIN C, WENG M Y, et al. Structural origin of the high-voltage instability of lithium cobalt oxide[J]. Nat Nanotechnol, 2021, 16(5): 599-605.
[5] GU M, HE Y, ZHENG J M, et al. Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges[J]. Nano Energy, 2015, 17: 366-383.
[6] WANG C Y, YANG C P, ZHENG Z J. Toward practical high-energy and high-power lithium battery anodes: Present and future[J]. Adv Sci, 2022, 9(9): e2105213.
[7] DU C Y, ZHAO Z Y, LIU H, et al. The status of representative anode materials for lithium-ion batteries[J]. Chem Rec, 2023, 23(5): e202300004.
[8] JI Liming, QIU Junli, XIA Yanqing, et al. Acta Petrolei Sin, 2012, 33(2): 249-256.
[9] SCHOONHEYDT R A. Reflections on the material science of clay minerals[J]. Appl Clay Sci, 2016, 131: 107-112.
[10] DEDZO G K, DETELLIER C. Clay minerals—Ionic liquids, nanoarchitectures, and applications[J]. Adv Funct Materials, 2018, 28(27): 1703845.
[11] FANG X Y, WU L L, GENG A S, et al. The effects of minerals on oil cracking in confined pyrolysis experiments[J]. IOP Conf Ser: Earth Environ Sci, 2019, 360(1): 012009.
[12] QING Yanhong, SU Xiaoli, WANG Yuebo, et al. Mater Rep, 2020, 34(19): 19018-19026.
[13] KANG N X, ZHOU W C, QI Z, et al. Recent progress of natural mineral materials in environmental remediation[J]. Catalysts, 2022, 12(9): 996.
[14] TIAN L L, XIONG L, HUANG C, et al. Gel hybrid copolymer of organic palygorskite and methyl methacrylate electrolyte coated onto Celgard 2325 applied in lithium ion batteries[J]. J Appl Polym Sci, 2019, 136(38): 47970.
[15] LUN P Q, CHEN Z L, ZHANG Z B, et al. Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolytes for solid-state lithium-ion batteries[J]. RSC Adv, 2018, 8(60): 34232-34240.
[16] SANDí G, WINANS R E, CARRADO K A. New carbon electrodes for secondary lithium batteries[J]. J Electrochem Soc, 1996, 143(5): L95-L98.
[17] SANDí G, CARRADO K A, WINANS R E, et al. Carbons for lithium battery applications prepared using sepiolite as inorganic template[J]. J Electrochem Soc, 1999, 146(10): 3644-3648.
[18] LE H T T, DANG T D, CHU N T H, et al. Synthesis of nitrogen-doped ordered mesoporous carbon with enhanced lithium storage performance from natural Kaolin clay[J]. Electrochim Acta, 2020, 332: 135399.
[19] RYU J, HONG D, CHOI S, et al. Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes[J]. ACS Nano, 2016, 10(2): 2843-2851.
[20] CHEN Q Z, ZHU R L, LIU S H, et al. Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes[J]. J Mater Chem A, 2018, 6(15): 6356-6362.
[21] CHEN Q Z, LIU S H, ZHU R L, et al. Clay minerals derived nanostructured silicon with various morphology: Controlled synthesis, structural evolution, and enhanced lithium storage properties[J]. J Power Sources, 2018, 405: 61-69.
[22] DU J, ZHU R L, CHEN Q Z, et al. In situ synthesis of stable silicon carbide-reinforced silicon nanosheets from organoclay for high-performance lithium-ion battery anodes[J]. Appl Surf Sci, 2023, 617: 156566.
[23] BERGAYA F, LAGALY G. Handbook of Clay Science[M]. 2nd edition. Amsterdam: Elsevier, 2013.
[24] RYU J, HONG D, SHIN M, et al. Multiscale hyperporous silicon flake anodes for high initial coulombic efficiency and cycle stability[J]. ACS Nano, 2016, 10(11): 10589-10597.
[25] PARK Y K, BOYER M, HWANG G S, et al. Synthesis of Si/SiOx from talc and its characteristics as an anode for lithium-ion batteries[J]. J Electroanal Chem, 2019, 833: 552-559.
[26] PARK Y K, MYUNG Y, LEE J W. Facile and scalable synthesis of porous Si/SiOx nanoplates from talc for lithium-ion battery anodes[J]. ACS Appl Energy Mater, 2020, 3(9): 8803-8811.
[27] CHEN Q Z, WEI S S, ZHU R L, et al. Mechanochemical reduction of clay minerals to porous silicon nanoflakes for high-performance lithium-ion battery anodes[J]. Chem Commun, 2023, 59(96): 14297-14300.
[28] CLAVERIE M, DUMAS A, CARêME C, et al. Synthetic talc and talc-like structures: Preparation, features and applications[J]. Chemistry, 2018, 24(3): 519-542.
[29] LIU S N, ZHANG Q, YANG H M, et al. Fabrication of Si nanoparticles@carbon fibers composites from natural nanoclay as an advanced lithium-ion battery flexible anode[J]. Minerals, 2018, 8(5): 180.
[30] WANG H J, TANG W, NI L S, et al. Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries[J]. J Phys Chem Solids, 2020, 137: 109227.
[31] LI P R, WEI J C, CHIU Y F, et al. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay[J]. ACS Appl Mater Interfaces, 2010, 2(6): 1608-1613.
[32] ZHU Y R, KOTTARATH S, IROH J O, et al. Progressive intercalation and exfoliation of clay in polyaniline-montmorillonite clay nanocomposites and implication to nanocomposite impedance[J]. Energies, 2022, 15(15): 5366.
[33] SUN L, SU T T, XU L, et al. Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes[J]. Phys Chem Chem Phys, 2016, 18(3): 1521-1525.
[34] TAO Q, ZHANG Y M, ZHANG X, et al. Synthesis and characterization of layered double hydroxides with a high aspect ratio[J]. J Solid State Chem, 2006, 179(3): 708-715.
[35] TAO Q, REDDY B J, HE H P, et al. Synthesis and infrared spectroscopic characterization of selected layered double hydroxides containing divalent Ni and Co[J]. Mater Chem Phys, 2008, 112(3): 869-875.
[36] TAO Q, HE H P, FROST R L, et al. Nanomaterials based upon silylated layered double hydroxides[J]. Appl Surf Sci, 2009, 255(7): 4334-4340.
[37] LAIPAN M W, ZHU R L, CHEN Q Z, et al. From spent Mg/Al layered double hydroxide to porous carbon materials[J]. J Hazard Mater, 2015, 300: 572-580.
[38] LAIPAN M W, ZHU J X, XU Y, et al. Fabrication of layered double hydroxide/carbon nanomaterial for heavy metals removal[J]. Appl Clay Sci, 2020, 199: 105867.
[39] LAUERMANNOVá A M, PATEROVá I, PATERA J, et al. Hydrotalcites in construction materials[J]. Appl Sci, 2020, 10(22): 7989.
[40] LIU H G, WU S Q, TIAN N, et al. Carbon foams: 3D porous carbon materials holding immense potential[J]. J Mater Chem A, 2020, 8(45): 23699-23723.
[41] LIU G Y, GUO J M, WANG B S, et al. A porous carbon prepared by a template method using a clay mineral as a template[J]. Adv Mater Res, 2011, 230-232: 1151-1154.
[42] RUIZ-GARCíA C, PéREZ-CARVAJAL J, BERENGUER-MURCIA A, et al. Clay-supported graphene materials: Application to hydrogen storage[J]. Phys Chem Chem Phys, 2013, 15(42): 18635-18641.
[43] THAO N T, HIEN P T. Synthesis of porous carbon materials by the replication of organoclays[J]. Asian J Chem, 2013, 25(14): 8136-8140.
[44] MUSYOKA N M, REN J, LANGMI H W, et al. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications[J]. Int J Energy Res, 2015, 39(4): 494-503.
[45] KUKU?KA W, KIERZEK K, STANKIEWICZ N, et al. Well-designed porous graphene flakes for lithium-ion batteries with outstanding rate performance[J]. Langmuir, 2019, 35(39): 12613-12619.
[46] CHEN Q Z, ZHU R L, DENG W X, et al. From used montmorillonite to carbon monolayer-montmorillonite nanocomposites[J]. Appl Clay Sci, 2014, 100: 112-117.
[47] CHEN M S, FU W W, HU Y J, et al. Controllable growth of carbon nanosheets in the montmorillonite interlayers for high-rate and stable anode in lithium ion battery[J]. Nanoscale, 2020, 12(30): 16262-16269.
[48] GOURNIS D, KARAKASSIDES M A, BAKAS T, et al. Catalytic synthesis of carbon nanotubes on clay minerals[J]. Carbon, 2002, 40(14): 2641-2646.
[49] BAKANDRITSOS A, SIMOPOULOS A, PETRIDIS D. Carbon nanotube growth on a swellable clay matrix[J]. Chem Mater, 2005, 17(13): 3468-3474.
[50] ZHANG S S, ZHU J Y, ZHANG X W, et al. The removal mechanism of nitrobenzene by the Cu-Fe/Carbon material under different aeration conditions[J]. J Hazard Mater, 2021, 403: 123584.
[51] MOURID E H, LAKRAIMI M, BENAZIZ L, et al. Wastewater treatment test by removal of the sulfamethoxazole antibiotic by a calcined layered double hydroxide[J]. Appl Clay Sci, 2019, 168: 87-95.
[52] ZHU R L, CHEN Q Z, WANG X, et al. Templated synthesis of nitrogen-doped graphene-like carbon materials using spent montmorillonite[J]. RSC Adv, 2015, 5(10): 7522-7528.
[53] CHEN Q Z, LIU H M, ZHU R L, et al. Facile synthesis of nitrogen and sulfur Co-doped graphene-like carbon materials using methyl blue/montmorillonite composites[J]. Microporous Mesoporous Mater, 2016, 225: 137-143.
[54] YANG S S, LI C Q, LI Y H, et al. Insight into the effect of clay mineral structure on clay-derived N-doped carbon materials and their efficient electrocatalytic performance[J]. Surf Interfaces, 2022, 31: 102000.
[55] FU N, WEI H M, LIN H L, et al. Iron nanoclusters as template/activator for the synthesis of nitrogen doped porous carbon and its CO2 adsorption application[J]. ACS Appl Mater Interfaces, 2017, 9(11): 9955-9963.
[56] SONOBE N, KYOTANI T, TOMITA A. Carbonization of polyfurfuryl alcohol and polyvinyl acetate between the lamellae of montmorillonite[J]. Carbon, 1990, 28(4): 483-488.
[57] SONOBE N, KYOTANI T, TOMITA A. Formation of graphite thin film from polyfurfuryl alcohol and polyvinyl acetate carbons prepared between the lamellae of montmorillonite[J]. Carbon, 1991, 29(1): 61-67.
[58] LAIPAN M W, FU H Y, ZHU R L, et al. Converting spent Cu/Fe layered double hydroxide into Cr(VI) reductant and porous carbon material[J]. Sci Rep, 2017, 7(1): 7277.
[59] WANG Z J, YU X L, HE W H, et al. Construction of a unique two-dimensional hierarchical carbon architecture for superior lithium-ion storage[J]. ACS Appl Mater Interfaces, 2016, 8(49): 33399-33404.
[60] XING Z Y, LU J, JI X L. A brief review of metallothermic reduction reactions for materials preparation[J]. Small Meth, 2018, 2(12): 1800062.
[61] ENTWISTLE J, RENNIE A, PATWARDHAN S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. J Mater Chem A, 2018, 6(38): 18344-18356.
[62] ZHOU X Y, WU L L, YANG J, et al. Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for lithium-ion batteries[J]. J Power Sources, 2016, 324: 33-40.
[63] CHEN Q Z, ZHU R L, FU H Y, et al. From natural clay minerals to porous silicon nanoparticles[J]. Microporous Mesoporous Mater, 2018, 260: 76-83.
[64] TANG W, GUO X X, LIU X H, et al. Interconnected silicon nanoparticles originated from halloysite nanotubes through the magnesiothermic reduction: A high-performance anode material for lithium-ion batteries[J]. Appl Clay Sci, 2018, 162: 499-506.
[65] ADPAKPANG K, PATIL S B, OH S M, et al. Effective chemical route to 2D nanostructured silicon electrode material: Phase transition from exfoliated clay nanosheet to porous Si nanoplate[J]. Electrochim Acta, 2016, 204: 60-68.
[66] NOHIRA T, YASUDA K, ITO Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon[J]. Nat Mater, 2003, 2(6): 397-401.
[67] YASUDA K, NOHIRA T, AMEZAWA K, et al. Mechanism of direct electrolytic reduction of solid SiO2 to Si in molten CaCl2[J]. J Electrochem Soc, 2005, 152(4): D69.
[68] YASUDA K, NOHIRA T, TAKAHASHI K, et al. Electrolytic reduction of a powder-molded SiO2 pellet in molten CaCl2 and acceleration of reduction by Si addition to the pellet[J]. J Electrochem Soc, 2005, 152(12): D232.
[69] KOBAYASHI K, NOHIRA T, HAGIWARA R, et al. Direct electrolytic reduction of powdery SiO2 in molten CaCl2 with pellet-type SiO2 contacting electrodes[J]. ECS Trans, 2010, 33(7): 239-248.
[70] NISHIMURA Y, NOHIRA T, KOBAYASHI K, et al. Formation of Si nanowires by direct electrolytic reduction of porous SiO2 pellets in molten CaCl2[J]. J Electrochem Soc, 2011, 158(6): E55.
[71] TOBA T, YASUDA K, NOHIRA T, et al. Fundamental study on reduction rate for electrolytic reduction of SiO2 powder in molten CaCl2[J]. ECS Trans, 2013, 50(11): 119-126.
[72] ZHAO Z Q, XIE H W, QU J K, et al. A natural transporter of silicon and carbon: Conversion of rice husks to silicon carbide or carbon-silicon hybrid for lithium-ion battery anodes via a molten salt electrolysis approach[J]. Batter Supercaps, 2019, 2(12): 1007-1015.
[73] CHOI J H, KIM H K, JIN E M, et al. Facile and scalable synthesis of silicon nanowires from waste rice husk silica by the molten salt process[J]. J Hazard Mater, 2020, 399: 122949.
[74] PANG D, WENG W, ZHOU J, et al. Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts[J]. J Energy Chem, 2021, 55: 102-107.
[75] WANG F, MA Y S, LI P, et al. Electrochemical conversion of silica nanoparticles to silicon nanotubes in molten salts: Implications for high-performance lithium-ion battery anode[J]. ACS Appl Nano Mater, 2021, 4(7): 7028-7036.
[76] WANG F, LIU W, MA Y S, et al. Fabricating silicon nanotubes by electrochemical exfoliation and reduction of layer-structured CaSiO3 in molten salt[J]. ACS Appl Mater Interfaces, 2021, 13(26): 30668-30677.
[77] WANG F, LI P, LI W, et al. Electrochemical synthesis of multidimensional nanostructured silicon as a negative electrode material for lithium-ion battery[J]. ACS Nano, 2022, 16(5): 7689-7700.
[78] YU Q, LIU J, LIANG Y L, et al. Synthesis of 3D stacked silicon nanosheets via electrochemical reduction of attapulgite in molten salt for high-performance lithium-ion batteries anode[J]. Electrochim Acta, 2022, 422: 140515.
[79] LI P, KIM H, MYUNG S T, et al. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries[J]. Energy Storage Mater, 2021, 35: 550-576.
[80] ZHANG P P, ZHAO C X, NING W K, et al. Utilization of pelagic clay to prepare porous silicon as negative electrode for lithium-ion batteries[J]. Colloids Surf A Physicochem Eng Aspects, 2022, 642: 128605.
[81] GAO S L, YANG D D, PAN Y Y, et al. From natural material to high-performance silicon based anode: Towards cost-efficient silicon based electrodes in high-performance Li-ion batteries[J]. Electrochim Acta, 2019, 327: 135058.
[82] CHEN Q Z, ZHU R L, HE Q Z, et al. In situ synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes[J]. Chem Commun, 2019, 55(18): 2644-2647.
[83] WEN Z H, LU G H, CUI S M, et al. Rational design of carbon network cross-linked Si-SiC hollow nanosphere as anode of lithium-ion batteries[J]. Nanoscale, 2014, 6(1): 342-351.
[84] WENG Y H, CHEN G R, DOU F, et al. In situ growth of silicon carbide interface enhances the long life and high power of the mulberry-like Si-based anode for lithium-ion batteries[J]. J Energy Storage, 2020, 32: 101856.
[85] ZHANG Z H, LI H B. Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability[J]. Appl Surf Sci, 2020, 514: 145920.
[86] YU D C, LEE S, HWANG G S. On the origin of Si nanocrystal formation in a Si suboxide matrix[J]. J Appl Phys, 2007, 102(8): 084309.
[87] LU Hao, LIU Bonan, CHU Geng, et al. Energy Storage Sci Technol, 2016, 5(2): 109-119.
[88] PAN Guanghong, LIANG Wenbin, TANG Kun, et al. Energy Storage Sci Technol, 2019, 8(2): 292-296.
[89] BORUAH J, CHOWDHURY D. Advances in carbon nanomaterial-clay nanocomposites for diverse applications[J]. Minerals, 2022, 13(1): 26.
[90] GEIM A K, GRIGORIEVA I V. Van der waals heterostructures[J]. Nature, 2013, 499(7459): 419-425.
[91] CHEN W, LEI T Y, LV W Q, et al. Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery[J]. Adv Mater, 2018: e1804084.
[92] ZHU B, WANG X Y, YAO P C, et al. Towards high energy density lithium battery anodes: Silicon and lithium[J]. Chem Sci, 2019, 10(30): 7132-7148.
[93] MAJEED M K, IQBAL R, HUSSAIN A, et al. Silicon-based anode materials for lithium batteries: Recent progress, new trends, and future perspectives[J]. Crit Rev Solid State Mater Sci, 2024, 49(2): 221-253.
[94] GE M Z, CAO C Y, BIESOLD G M, et al. Recent advances in silicon-based electrodes: From fundamental research toward practical applications[J]. Adv Mater, 2021, 33(16): e2004577.
[95] KIM J H, PARK C M, KIM H, et al. Electrochemical behavior of SiO anode for Li secondary batteries[J]. J Electroanal Chem, 2011, 661(1): 245-249.
[96] PAN K, ZOU F, CANOVA M, et al. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-Ion batteries[J]. J Power Sources, 2019, 413: 20-28.
[97] PARK E, YOO H, LEE J, et al. Dual-size silicon nanocrystal-embedded SiOx nanocomposite as a high-capacity lithium storage material[J]. ACS Nano, 2015, 9(7): 7690-7696.