[1] CAO W Z, LI Q, YU X Q, et al. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47-78.
[2] CHEN A L, SHANG N, OUYANG Y, et al. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes[J]. eScience, 2022, 2(2): 192-200.
[3] LEE B, PAEK E, MITLIN D, et al. Sodium metal anodes: emerging solutions to dendrite growth[J]. Chem Rev, 2019, 119(8): 5416-5460.
[7] LI P, KIM H, MING J, et al. Quasi-compensatory effect in emerging anode-free lithium batteries[J]. eScience, 2021, 1(1): 3-12.
[8] LIU Y, ZHAI Y P, XIA Y Y, et al. Recent progress of porous materials in lithium-metal batteries[J]. Small Struct, 2021, 2(5): 2000118.
[12] WANG J, MA Q, SUN S, et al. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth[J]. eScience, 2022, 2(6): 655-665.
[13] YU X W, MANTHIRAM A. Recent advances in lithium-carbon dioxide batteries[J]. Small Struct, 2020, 1(2): 2000027.
[15] ZHANG C Z, WANG F, HAN J, et al. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries[J]. Small Struct, 2021, 2(6): 2100009.
[16] ZHAO R, SUN N, XU B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries[J]. Small Struct, 2021, 2(12): 2100132.
[17] NI Q, YANG Y J, DU H S, et al. Anode-free rechargeable sodium-metal batteries[J]. Batteries, 2022, 8(12): 272.
[18] COHN A P, MURALIDHARAN N, CARTER R, et al. Anode-free sodium battery through in situ plating of sodium metal[J]. Nano Lett, 2017, 17(2): 1296-1301.
[19] FANG H Y, GAO S N, ZHU Z, et al. Recent progress and perspectives of sodium metal anodes for rechargeable batteries[J].Chem Res Chin Univ, 2021, 37(2): 189-199.
[20] XU X D, ZENG H L, HAN D Z, et al. Nitrogen and sulfur Co-doped graphene nanosheets to improve anode materials for sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(43): 37172-37180.
[21] ZHU H, WANG C Y, LI C Y, et al. Engineering capacitive contribution in nitrogen-doped carbon nanofiber films enabling high performance sodium storage[J]. Carbon, 2018, 130: 145-152.
[22] YUE L, XU W Y, LI K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Appl Surf Sci, 2021, 546: 149168.
[23] BALOGUN M S, LUO Y, QIU W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178.
[24] ZHANG T Y, RAN F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Adv Funct Mater, 2021, 31(17): 2010041.
[25] SONG K M, LIU C T, MI L W, et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries[J]. Small, 2021, 17(9): 1903194.
[26] ZHENG S M, TIAN Y R, LIU Y X, et al. Alloy anodes for sodium-ion batteries[J].Rare Met, 2021, 40(2): 272-289.
[27] LI M, LU J, JI X L, et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes[J]. Nat Rev Mater, 2020, 5(4): 276-294.
[28] LIU Q N, HU Z, LI W J, et al. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?[J]. Energy Environ Sci, 2021, 14(1): 158-179.
[29] SUN Y, GUO S H, ZHOU H S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy Environ Sci, 2019, 12(3): 825-840.
[30] GENG P B, ZHENG S S, TANG H, et al. Transition metal sulfides based on graphene for electrochemical energy storage[J]. Adv Energy Mater, 2018, 8(15): 1703259.
[31] MA M Z, YAO Y, WU Y, et al. Progress and prospects of transition metal sulfides for sodium storage[J].Adv Fiber Mater, 2020, 2(6): 314-337.
[32] WEI C L, TAN L W, ZHANG Y C, et al. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes[J]. J Mater Sci Technol, 2022, 115: 156-165.
[33] CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys Rev A, 1990, 42(12): 7355-7367.
[34] ELY D R, GARCA R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. J Electrochem Soc, 2013, 160(4): A662-A668.
[35] KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.
[36] HU Z, LIU Q N, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J]. Adv Mater, 2017, 29(48): 1700606.
[38] ZHENG X Y, BOMMIER C, LUO W, et al. Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions[J]. Energy Storage Mater, 2019, 16: 6-23.
[39] ZHAO Y, ADAIR K R, SUN X L. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries[J]. Energy Environ Sci, 2018, 11(10): 2673-2695.
[40] WANG H, MATIOS E, LUO J M, et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries[J]. Chem Soc Rev, 2020, 49(12): 3783-3805.
[41] CUI J Y, WANG A X, LI G J, et al. Composite sodium metal anodes for practical applications[J]. J Mater Chem A, 2020, 8(31): 15399-15416.
[42] SHI L, ZHAO T S. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries[J]. J Mater Chem A, 2017, 5(8): 3735-3758.
[43] CHU C X, LI R, CAI F P, et al. Recent advanced skeletons in sodium metal anodes[J]. Energy Environ Sci, 2021, 14(8): 4318-4340.
[44] AN Y L, TIAN Y, WEI C L, et al. Dealloying: an effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage[J]. Nano Today, 2021, 37: 101094.
[45] CAO R G, MISHRA K, LI X L, et al. Enabling room temperature sodium metal batteries[J]. Nano Energy, 2016, 30: 825-830.
[46] LU Y Y, ZHANG Q, HAN M, et al. Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires[J]. Chem Commun, 2017, 53(96): 12910-12913.
[47] WANG T S, LIU Y C, LU Y X, et al. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Mater, 2018, 15: 274-281.
[48] SUN J C, GUO C P, CAI Y J, et al. Dendrite-free and long-life Na metal anode achieved by 3D porous Cu[J]. Electrochim Acta, 2019, 309: 18-24.
[49] XU Y L, MENON A S, HARKS P P R M L, et al. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes[J]. Energy Storage Mater, 2018, 12: 69-78.
[50] LIU S, TANG S, ZHANG X Y, et al. Porous Al current collector for dendrite-free Na metal anodes[J]. Nano Lett, 2017, 17(9): 5862-5868.
[51] TANG F, XIA R Q, CHEN D, et al. Rapid and reversible Na deposition onto Al nanosheet arrays[J]. J Energy Chem, 2022, 74: 1-7.
[52] YANG S N, CHENG Y, XIAO X, et al. Development and application of carbon fiber in batteries[J]. Chem Eng J, 2020, 384: 123294.
[53] YAN K, ZHAO S Q, ZHANG J Q, et al. Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix[J]. Nano Lett, 2020, 20(8): 6112-6119.
[54] YU Y K, WANG Z Y, HOU Z, et al. 3D printing of hierarchical graphene lattice for advanced Na metal anodes[J]. ACS Appl Energy Mater, 2019, 2(5): 3869-3877.
[55] YAN J, ZHI G, KONG D Z, et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode[J]. J Mater Chem A, 2020, 8(38): 19843-19854.
[56] SUN Z W, YE Y D, ZHU J W, et al. Regulating sodium deposition through gradiently-graphitized framework for dendrite-free Na metal anode[J]. Small, 2022, 18(18): 2107199.
[57] ZHANG Q, LU Y Y, ZHOU M, et al. Achieving a stable Na metal anode with a 3D carbon fibre scaffold[J]. Inorg Chem Front, 2018, 5(4): 864-869.
[58] GO W, KIM M H, PARK J, et al. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes[J]. Nano Lett, 2019, 19(3): 1504-1511.
[59] BAO C Y, WANG B, XIE Y, et al. Sodiophilic decoration of a three-dimensional conductive scaffold toward a stable Na metal anode[J]. ACS Sustainable Chem Eng, 2020, 8(14): 5452-5463.
[60] WANG B Y, JIANG T T, HOU L J, et al. N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode[J]. Solid State Ion, 2021, 368: 115711.
[61] CHU C X, WANG N N, LI L L, et al. Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes[J]. Energy Storage Mater, 2019, 23: 137-143.
[62] LIU B, LEI D N, WANG J, et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode[J].Nano Res, 2020, 13(8): 2136-2142.
[63] CUI X Y, WANG Y J, WU H D, et al. A carbon foam with sodiophilic surface for highly reversible, ultra-long cycle sodium metal anode[J]. Adv Sci, 2021, 8(2): 2003178.
[64] LI T J, SUN J C, GAO S Z, et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure[J]. Adv Energy Mater, 2021, 11(7): 2003699.
[65] PARK S, JIN H J, YUN Y S. Effects of carbon-based electrode materials for excess sodium metal anode engineered rechargeable sodium batteries[J]. ACS Sustainable Chem Eng, 2020, 8(48): 17697-17706.
[66] ZHENG Z J, ZENG X X, YE H, et al. Nitrogen and oxygen Co-doped graphitized carbon fibers with sodiophilic-rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium-metal anodes[J]. ACS Appl Mater Interfaces, 2018, 10(36): 30417-30425.
[67] ZHANG Z G, LI L, ZHU Z C, et al. Homogenous sdiophilic MoS2/nitrogen-doped carbon nanofibers to stabilize sodium deposition for sodium metal batteries[J]. Energy Stor Mater, 2022, 53: 363-370.
[68] HE X, JIN S, MIAO L C, et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes[J]. Angew Chem Int Ed, 2020, 59(38): 16705-16711.
[69] WANG Z X, HUANG Z X, WANG H, et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity[J]. ACS Nano, 2022, 16(6): 9105-9116.
[70] XIA X M, DU C F, ZHONG S E, et al. Homogeneous Na deposition enabling high-energy Na-metal batteries[J]. Adv Funct Materials, 2022, 32(10): 2110280.
[71] YOON H J, KIM N R, JIN H J, et al. Macroporous catalytic carbon nanotemplates for sodium metal anodes[J]. Adv Energy Mater, 2018, 8(6): 1701261.
[72] XU Z, GUO Z Y, MADHU R, et al. Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries[J]. Energy Environ Sci, 2021, 14(12): 6381-6393.
[73] QIU R X, ZHAO S, JU Z J, et al. Sodiophilic skeleton based on the packing of hard carbon microspheres for stable sodium metal anode without dead sodium[J]. J Energy Chem, 2022, 73: 400-406.
[74] ZHENG X Y, LI P, CAO Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small, 2019, 15(41): 1902688.
[75] MUBARAK N, REHMAN F, WU J X, et al. Morphology, chemistry, performance trident: insights from hollow, mesoporous carbon nanofibers for dendrite-free sodium metal batteries[J]. Nano Energy, 2021, 86: 106132.
[76] YANG S N, LI Y T, DU H X, et al. Copper nanoparticle-modified carbon nanofiber for seeded zinc deposition enables stable Zn metal anode[J]. ACS Sustainable Chem Eng, 2022, 10(38): 12630-12641.
[77] BAO C Y, WANG B, LIU P, et al. Solid electrolyte interphases on sodium metal anodes[J]. Adv Funct Mater, 2020, 30(52): 2004891.
[78] YANG H Y, ZHANG L M, WANG H, et al. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode[J]. J Colloid Interface Sci, 2022, 611: 317-326.
[79] WU J X, ZOU P C, IHSAN-UL-HAQ M, et al. Sodium batteries: sodiophilically graded gold coating on carbon skeletons for highly stable sodium metal anodes (small 40/2020)[J]. Small, 2020, 16(40): 2070223.
[80] WANG H, BAI W L, WANG H, et al. 3D printed Au/rGO microlattice host for dendrite-free sodium metal anode[J]. Energy Storage Mater, 2023, 55: 631-641.
[81] WANG Z H, ZHANG X L, ZHOU S Y, et al. Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes[J]. Adv Funct Mater, 2018, 28(48): 1804038.
[82] TIAN B F, HUANG Z X, YANG H Y, et al. Sodiophilic silver nanoparticles anchoring on vertical graphene modified carbon cloth for longevous sodium metal anodes[J].Ionics, 2022, 28(10): 4641-4651.
[83] LEE K, LEE Y J, LEE M J, et al. A 3D hierarchical host with enhanced sodiophilicity enabling anode-free sodium-metal batteries[J]. Adv Mater, 2022, 34(14): 2109767.
[84] WANG H, MATIOS E, WANG C L, et al. Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes[J]. J Mater Chem A, 2019, 7(41): 23747-23755.
[85] XIE Y Y, HU J X, HAN Z X, et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries[J]. Energy Storage Mater, 2020, 30: 1-8.
[86] LI Y J, XU P, MOU J R, et al. Single cobalt atoms decorated N-doped carbon polyhedron enabled dendrite-free sodium metal anode[J]. Small Methods, 2021, 5(11): 2100833.
[87] LI X, YE W B, XU P, et al. An encapsulation-based sodium storage via Zn-single-atom implanted carbon nanotubes[J]. Adv Mater, 2022, 34(31): 2202898.
[88] XIONG W S, JIANG Y, XIA Y, et al. A robust 3D host for sodium metal anodes with excellent machinability and cycling stability[J]. Chem Commun, 2018, 54(68): 9406-9409.
[89] LI Y T, YANG S N, DU H X, et al. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery[J]. J Mater Chem A, 2022, 10(27): 14399-14410.
[90] ZHU X L, WANG Y, WANG W Y, et al. Stable sodium metal anodes enabled by an in situ generated mixed-ion/electron-conducting interface[J]. Chem Eng J, 2022, 446: 136917.
[91] ZHANG L, ZHU X L, WANG G Y, et al. Bi nanoparticles embedded in 2D carbon nanosheets as an interfacial layer for advanced sodium metal anodes[J]. Small, 2021, 17(12): 2007578.
[92] WANG G Y, ZHANG Y, GUO B K, et al. Core-shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes[J]. Nano Lett, 2020, 20(6): 4464-4471.
[93] WANG G Y, YU F F, ZHANG Y, et al. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization[J]. Nano Energy, 2021, 79: 105457.
[94] CHEN Q W, ZHANG T X, HOU Z, et al. Large-scale sodiophilic/buffered alloy architecture enables deeply cyclable Na metal anodes[J]. Chem Eng J, 2022, 433: 133270.
[95] CHEN Q L, LIU B, ZHANG L, et al. Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal batteries[J]. Chem Eng J, 2021, 404: 126469.
[96] CHEN Q W, HOU Z, SUN Z Z, et al. Polymer-inorganic composite protective layer for stable Na metal anodes[J]. ACS Appl Energy Mater, 2020, 3(3): 2900-2906.
[97] HU X F, MATIOS E, ZHANG Y W, et al. Enabling stable sodium metal cycling by sodiophilic interphase in a polymer electrolyte system[J]. J Energy Chem, 2021, 63: 305-311.
[98] TANG S, QIU Z, WANG X Y, et al. A room-temperature sodium metal anode enabled by a sodiophilic layer[J]. Nano Energy, 2018, 48: 101-106.