• Photonics Research
  • Vol. 9, Issue 7, 1226 (2021)
Jing Tang1, Yuangang Deng1、4、*, and Chaohong Lee1、2、3、5、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University (Guangzhou Campus), Guangzhou 510275, China
  • 3Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 4e-mail: dengyg3@mail.sysu.edu.cn
  • 5e-mail:lichaoh2@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.419275 Cite this Article Set citation alerts
    Jing Tang, Yuangang Deng, Chaohong Lee. Tunable photon blockade with a single atom in a cavity under electromagnetically induced transparency[J]. Photonics Research, 2021, 9(7): 1226 Copy Citation Text show less
    References

    [1] C. H. Bennett, D. P. DiVincenzo. Quantum information and computation. Nature, 404, 247-255(2000).

    [2] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [3] L.-M. Duan, H. J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 92, 127902(2004).

    [4] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135-174(2007).

    [5] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation. Rep. Prog. Phys., 74, 104401(2011).

    [6] L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).

    [7] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301-1350(2009).

    [8] J. L. O’Brien, A. Furusawa, J. Vučković. Photonic quantum technologies. Nat. Photonics, 3, 687-695(2009).

    [9] V. Giovannetti, S. Lloyd, L. Maccone. Advances in quantum metrology. Nat. Photonics, 5, 222-229(2011).

    [10] D. E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M. D. Lukin, E. A. Demler. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nat. Phys., 4, 884-889(2008).

    [11] D. E. Chang, V. Vuletić, M. D. Lukin. Quantum nonlinear optics —photon by photon. Nat. Photonics, 8, 685-694(2014).

    [12] M. J. Hartmann. Quantum simulation with interacting photons. J. Opt., 18, 104005(2016).

    [13] H. Schmidt, A. Imamoglu. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett., 21, 1936-1938(1996).

    [14] A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 79, 1467-1470(1997).

    [15] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87-90(2005).

    [16] T. C. H. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 104, 183601(2010).

    [17] J. Tang, W. Geng, X. Xu. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep., 5, 9252(2015).

    [18] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoglu. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445, 896-899(2007).

    [19] K. Müller, A. Rundquist, K. A. Fischer, T. Sarmiento, K. G. Lagoudakis, Y. A. Kelaita, C. S. Muñoz, E. del Valle, F. P. Laussy, J. Vučković. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett., 114, 233601(2015).

    [20] J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, A. Wallraff. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature, 454, 315-318(2008).

    [21] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 4, 859-863(2008).

    [22] A. Majumdar, M. Bajcsy, A. Rundquist, J. Vučković. Loss-enabled sub-Poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett., 108, 183601(2012).

    [23] P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 107, 063601(2011).

    [24] A. Nunnenkamp, K. Børkje, S. M. Girvin. Single-photon optomechanics. Phys. Rev. Lett., 107, 063602(2011).

    [25] H. Wang, X. Gu, Y.-X. Liu, A. Miranowicz, F. Nori. Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A, 92, 033806(2015).

    [26] B. Sarma, A. K. Sarma. Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A, 98, 013826(2018).

    [27] I. M. Mirza, J. C. Schotland. Two-photon entanglement in multiqubit bidirectional-waveguide QED. Phys. Rev. A, 94, 012309(2016).

    [28] I. M. Mirza, J. G. Hoskins, J. C. Schotland. Chirality, band structure, and localization in waveguide quantum electrodynamics. Phys. Rev. A, 96, 053804(2017).

    [29] N. Gheeraert, X. H. H. Zhang, T. Sépulcre, S. Bera, N. Roch, H. U. Baranger, S. Florens. Particle production in ultrastrong-coupling waveguide QED. Phys. Rev. A, 98, 043816(2018).

    [30] H. Zheng, D. J. Gauthier, H. U. Baranger. Cavity-free photon blockade induced by many-body bound states. Phys. Rev. Lett., 107, 223601(2011).

    [31] I. M. Mirza, J. C. Schotland. Multiqubit entanglement in bidirectional-chiral-waveguide QED. Phys. Rev. A, 94, 012302(2016).

    [32] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, A. A. Houck. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett., 107, 053602(2011).

    [33] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett., 106, 243601(2011).

    [34] Y.-X. Liu, X.-W. Xu, A. Miranowicz, F. Nori. From blockade to transparency: controllable photon transmission through a circuit-QED system. Phys. Rev. A, 89, 043818(2014).

    [35] H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, W. Löffler. Observation of the unconventional photon blockade. Phys. Rev. Lett., 121, 043601(2018).

    [36] C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, J. Estève. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett., 121, 043602(2018).

    [37] J. Tang, Y. Deng, C. Lee. Strong photon blockade mediated by optical stark shift in a single-atom–cavity system. Phys. Rev. Appl., 12, 044065(2019).

    [38] M. Fleischhauer, M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84, 5094(2000).

    [39] S. E. Harris, J. E. Field, A. Imamoglu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64, 1107-1110(1990).

    [40] M. D. Lukin, A. Imamoglu. Controlling photons using electromagnetically induced transparency. Nature, 413, 273-276(2001).

    [41] H. Kang, Y. Zhu. Observation of large Kerr nonlinearity at low light intensities. Phys. Rev. Lett., 91, 093601(2003).

    [42] M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77, 633-673(2005).

    [43] M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, M. D. Lukin. Electromagnetically induced transparency with tunable single-photon pulses. Nature, 438, 837-841(2005).

    [44] M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, G. Rempe. Electromagnetically induced transparency with single atoms in a cavity. Nature, 465, 755-758(2010).

    [45] J. A. Souza, E. Figueroa, H. Chibani, C. J. Villas-Boas, G. Rempe. Coherent control of quantum fluctuations using cavity electromagnetically induced transparency. Phys. Rev. Lett., 111, 113602(2013).

    [46] H. Tanji-Suzuki, W. Chen, R. Landig, J. Simon, V. Vuletić. Vacuum-induced transparency. Science, 333, 1266-1269(2011).

    [47] M. Albert, A. Dantan, M. Drewsen. Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals. Nat. Photonics, 5, 633-636(2011).

    [48] W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, V. Vuletić. All-optical switch and transistor gated by one stored photon. Science, 341, 768-770(2013).

    [49] T. Kampschulte, W. Alt, S. Brakhane, M. Eckstein, R. Reimann, A. Widera, D. Meschede. Optical control of the refractive index of a single atom. Phys. Rev. Lett., 105, 153603(2010).

    [50] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, V. Vuletić. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature, 488, 57-60(2012).

    [51] A. Holleczek, O. Barter, A. Rubenok, J. Dilley, P. B. R. Nisbet-Jones, G. Langfahl-Klabes, G. D. Marshall, C. Sparrow, J. L. O’Brien, K. Poulios, A. Kuhn, J. C. F. Matthews. Quantum logic with cavity photons from single atoms. Phys. Rev. Lett., 117, 023602(2016).

    [52] J. Li, Y. Qu, R. Yu, Y. Wu. Generation and control of optical frequency combs using cavity electromagnetically induced transparency. Phys. Rev. A, 97, 023826(2018).

    [53] S. Barrett, K. Hammerer, S. Harrison, T. E. Northup, T. J. Osborne. Simulating quantum fields with cavity QED. Phys. Rev. Lett., 110, 090501(2013).

    [54] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).

    [55] S. Ritter, C. Noelleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Muecke, E. Figueroa, J. Bochmann, G. Rempe. An elementary quantum network of single atoms in optical cavities. Nature, 484, 195-200(2012).

    [56] H. Wu, J. Gea-Banacloche, M. Xiao. Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium. Phys. Rev. Lett., 100, 173602(2008).

    [57] M. J. Werner, A. Imamoglu. Photon-photon interactions in cavity electromagnetically induced transparency. Phys. Rev. A, 61, 011801(1999).

    [58] S. Rebic, S. M. Tan, A. S. Parkins, D. F. Walls. Large Kerr nonlinearity with a single atom. J. Opt. B, 1, 490-495(1999).

    [59] S. Rebić, A. Parkins, S. Tan. Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency. Phys. Rev. A, 65, 063804(2002).

    [60] M. Bajcsy, A. Majumdar, A. Rundquist, J. Vučković. Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity. New J. Phys., 15, 025014(2013).

    [61] H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, G. Rempe. A single-atom quantum memory. Nature, 473, 190-193(2011).

    [62] M. A. Norcia, M. N. Winchester, J. R. K. Cline, J. K. Thompson. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv., 2, e1601231(2016).

    [63] M. N. Winchester, M. A. Norcia, J. R. K. Cline, J. K. Thompson. Magnetically induced optical transparency on a forbidden transition in strontium for cavity-enhanced spectroscopy. Phys. Rev. Lett., 118, 263601(2017).

    [64] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, L. Fallani. Synthetic dimensions and spin-orbit coupling with an optical clock transition. Phys. Rev. Lett., 117, 220401(2016).

    [65] S. Kolkowitz, S. Bromley, T. Bothwell, M. Wall, G. Marti, A. Koller, X. Zhang, A. Rey, J. Ye. Spin–orbit-coupled fermions in an optical lattice clock. Nature, 542, 66-70(2017).

    [66] S. Bromley, S. Kolkowitz, T. Bothwell, D. Kedar, A. Safavi-Naini, M. Wall, C. Salomon, A. Rey, J. Ye. Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock. Nat. Phys., 14, 399-404(2018).

    [67] S. M. Tan. A computational toolbox for quantum and atomic optics. J. Opt. B, 1, 424-432(1999).

    [68] Y. Wang, S. Subhankar, P. Bienias, M. Lacki, T.-C. Tsui, M. A. Baranov, A. V. Gorshkov, P. Zoller, J. V. Porto, S. L. Rolston. Dark state optical lattice with a subwavelength spatial structure. Phys. Rev. Lett., 120, 083601(2018).

    [69] J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 78, 3221-3224(1997).

    [70] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoglu. Ultrafast all-optical switching by single photons. Nat. Photonics, 6, 605-609(2012).

    [71] S. Rebić, A. S. Parkins, S. M. Tan. Polariton analysis of a four-level atom strongly coupled to a cavity mode. Phys. Rev. A, 65, 043806(2002).

    [72] A. D. Greentree, J. A. Vaccaro, S. R. de Echaniz, A. V. Durrant, J. P. Marangos. Prospects for photon blockade in four-level systems in the n configuration with more than one atom. J. Opt. B, 2, 252-259(2000).

    [73] M. G. Kozlov, M. S. Safronova, J. R. C. López-Urrutia, P. O. Schmidt. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys., 90, 045005(2018).

    Jing Tang, Yuangang Deng, Chaohong Lee. Tunable photon blockade with a single atom in a cavity under electromagnetically induced transparency[J]. Photonics Research, 2021, 9(7): 1226
    Download Citation