• Acta Photonica Sinica
  • Vol. 51, Issue 11, 1130002 (2022)
Junjie LI1、2, Jian SUN1, Hengxiang ZHAO1, Chenguang CHANG1、2, Di FU1、2, Hao ZHAO1, Lu BAI3, and Yutao FENG1、*
Author Affiliations
  • 1Xi′an Institute of Optics Precision Mechanic of Chinese Academy of Sciences,Xi′an710119,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3School of Physics and Optoelectronic Engineering,Xidian University,Xi′an710071,China
  • show less
    DOI: 10.3788/gzxb20225111.1130002 Cite this Article
    Junjie LI, Jian SUN, Hengxiang ZHAO, Chenguang CHANG, Di FU, Hao ZHAO, Lu BAI, Yutao FENG. Stray Light Characteristics and Suppression in Space-borne Doppler Asymmetric Spatial Heterodyne Interferometer[J]. Acta Photonica Sinica, 2022, 51(11): 1130002 Copy Citation Text show less
    Schematic diagram of limb viewing
    Fig. 1. Schematic diagram of limb viewing
    Optical system of Doppler asymmetric spatial heterodyne interferometer
    Fig. 2. Optical system of Doppler asymmetric spatial heterodyne interferometer
    Atmospheric background radiation intensity and airglow intensity
    Fig. 3. Atmospheric background radiation intensity and airglow intensity
    Atmospheric background radiation reaching the entrance pupil
    Fig. 4. Atmospheric background radiation reaching the entrance pupil
    Design principle of the baffle
    Fig. 5. Design principle of the baffle
    Baffle geometry
    Fig. 6. Baffle geometry
    3D model of Doppler asymmetric spatial heterodyne interferometer
    Fig. 7. 3D model of Doppler asymmetric spatial heterodyne interferometer
    Stray light caused by the key surfaces
    Fig. 8. Stray light caused by the key surfaces
    Detector shell
    Fig. 9. Detector shell
    Multistage diffraction of grating
    Fig. 10. Multistage diffraction of grating
    Diffraction light of the Doppler asymmetric spatial heterodyne interferometer on axis field
    Fig. 11. Diffraction light of the Doppler asymmetric spatial heterodyne interferometer on axis field
    Simulated irradiance map of sensor on axis field
    Fig. 12. Simulated irradiance map of sensor on axis field
    Reference frame of the Doppler asymmetric spatial heterodyne interferometer
    Fig. 13. Reference frame of the Doppler asymmetric spatial heterodyne interferometer
    PST curves of the Doppler asymmetric spatial heterodyne interferometer
    Fig. 14. PST curves of the Doppler asymmetric spatial heterodyne interferometer
    Division of observation area
    Fig. 15. Division of observation area
    Solid angle of CD for O
    Fig. 16. Solid angle of CD for O
    Simulated irradiance map of sensor
    Fig. 17. Simulated irradiance map of sensor
    Parameter indexParameter value
    Orbit altitude500 km
    Orbit inclination58°
    Eccentricity0
    Right ascension of ascending node10°
    Argument of perigee0
    Range of observation60~90 km
    Field of view0.72°×3.6°
    Characteristic wavelength865~869 nm
    Table 1. Orbit parameters and system parameters
    Surface typeTransmittance/%Absorptance/%Specular reflectivity/%BRDF/%Scatter model
    Lens surface98.3710.050.13Lambertian
    Reflector surface0594.870.13Lambertian
    Interferometer beam splitter4510450.13Lambertian
    +1 grating efficiency025750.13Lambertian
    Blackened non-working surface0900.0019.999Lambertian
    Table 2. Surface property setting in simulation mode
    Junjie LI, Jian SUN, Hengxiang ZHAO, Chenguang CHANG, Di FU, Hao ZHAO, Lu BAI, Yutao FENG. Stray Light Characteristics and Suppression in Space-borne Doppler Asymmetric Spatial Heterodyne Interferometer[J]. Acta Photonica Sinica, 2022, 51(11): 1130002
    Download Citation