• Acta Photonica Sinica
  • Vol. 52, Issue 6, 0604001 (2023)
Kefei GUO1、2, Fei YIN1、2, Liyu LIU1、2, Kai QIAO1、2, Ming LI1, Tao WANG1、2, Mengyan FANG1、2, Chao JI1、2, Youshan QU1、2, Jinshou TIAN1、2, and Xing WANG1、2、*
Author Affiliations
  • 1Key Laboratory of Ultrafast Photoelectric Diagnostics Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/gzxb20235206.0604001 Cite this Article
    Kefei GUO, Fei YIN, Liyu LIU, Kai QIAO, Ming LI, Tao WANG, Mengyan FANG, Chao JI, Youshan QU, Jinshou TIAN, Xing WANG. Effect of Zn Diffusion on Avalanche Breakdown Probability of InGaAs/InP Single Photon Avalanche Diodes[J]. Acta Photonica Sinica, 2023, 52(6): 0604001 Copy Citation Text show less
    Internal structure of back-illuminated InGaAs/InP SPAD
    Fig. 1. Internal structure of back-illuminated InGaAs/InP SPAD
    Electric field simulation diagram and vertical distribution
    Fig. 2. Electric field simulation diagram and vertical distribution
    I-V characteristics and PDE
    Fig. 3. I-V characteristics and PDE
    Avalanche breakdown probability simulation diagram and horizontal distribution
    Fig. 4. Avalanche breakdown probability simulation diagram and horizontal distribution
    Different Tshallow avalanche breakdown probability and horizontal electric field distribution at Vex =5 V
    Fig. 5. Different Tshallow avalanche breakdown probability and horizontal electric field distribution at Vex =5 V
    Avalanche breakdown probability of different lateral diffusion factor at Vex=5 V
    Fig. 6. Avalanche breakdown probability of different lateral diffusion factor at Vex=5 V
    Avalanche breakdown probability,horizontal electric field distribution and collision ionization coefficient ratio of different deep diffusion Zn doping concentrations at Vex=5 V
    Fig. 7. Avalanche breakdown probability,horizontal electric field distribution and collision ionization coefficient ratio of different deep diffusion Zn doping concentrations at Vex=5 V
    I-V characteristics and avalanche breakdown probability at different temperatures
    Fig. 8. I-V characteristics and avalanche breakdown probability at different temperatures
    Variation curve of breakdown voltage and avalanche breakdown probability with temperature
    Fig. 9. Variation curve of breakdown voltage and avalanche breakdown probability with temperature
    ComponentLayerThickness/μmDoping concentration/cm-3
    ZnShallow1.73×1018
    ZnDeep2.35×1018
    InPCap3.01×1015
    InPCharge0.21×1017
    InGaAsPGrading0.061×1015
    InGaAsAbsorption2.01×1015
    InPBuffer0.55×1017
    InPSubstrate3501×1018
    Table 1. Device structure parameters
    alow/cm-1ahigh/cm-1blow/cm-1bhigh/cm-1E0/(V·cm-1ℏωop/eV
    Electron1.12×1072.95×1063.10×1062.65×1063.85×1050.063
    Hole4.80×1061.62×1062.55×1062.10×1063.85×1050.063
    Table 2. Parameters of the van Overstraeten model for InP materials
    Kefei GUO, Fei YIN, Liyu LIU, Kai QIAO, Ming LI, Tao WANG, Mengyan FANG, Chao JI, Youshan QU, Jinshou TIAN, Xing WANG. Effect of Zn Diffusion on Avalanche Breakdown Probability of InGaAs/InP Single Photon Avalanche Diodes[J]. Acta Photonica Sinica, 2023, 52(6): 0604001
    Download Citation