• Frontiers of Optoelectronics
  • Vol. 8, Issue 2, 152 (2015)
Yue FANG, Cuifang KUANG, Ye MA, Yifan WANG, and Xu LIU*
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1007/s12200-015-0479-x Cite this Article
    Yue FANG, Cuifang KUANG, Ye MA, Yifan WANG, Xu LIU. Resolution and contrast enhancements of optical microscope based on point spread function engineering[J]. Frontiers of Optoelectronics, 2015, 8(2): 152 Copy Citation Text show less
    References

    [1] Martinez-Corral M, Caballero M T, Stelzer E H K, Swoger J. Tailoring the axial shape of the point spread function using the Toraldo concept. Optics Express, 2002, 10(1): 98–103

    [2] K hler H. On Abbe’s theory of image formation in the microscope. Journal of Modern Optics, 1981, 28(12): 1691–1701

    [3] Toomre D, Bewersdorf J. A new wave of cellular imaging. Annual Review of Cell and Developmental Biology, 2010, 26(1): 285–314

    [4] Bloembergen N. Nonlinear Optics. New York: Benjamin, 1965

    [5] Hell S W. Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering. In: Lakowicz J R, ed. Topics in Fluorescence Spectroscopy. New York: Springer US, 2002, 361–426

    [6] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 1994, 19(11): 780–782

    [7] Hell S W, Kroug M. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Applied Physics B, Lasers and Optics, 1995, 60(5): 495–497

    [8] Irvine S E, Staudt T, Rittweger E, Engelhardt J, Hell S W. Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angewandte Chemie (International ed. in English), 2008, 120(14): 2725–2728

    [9] Hofmann M, Eggeling C, Jakobs S, Hell S W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(49): 17565–17569

    [10] Bossi M, Belov V, Polyakova S, Hell S W. Reversible red fluorescent molecular switches. Angewandte Chemie (International ed. in English), 2006, 45(44): 7462–7465

    [11] Hao X, Kuang C, Li Y, Liu X. Reversible saturable optical transitions based fluorescence nanoscopy. Laser & Optoelectronic Progress, 2012, 49(3): 34–42

    [12] Sauer M. Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (27): 9433–9434

    [13] Hell S W, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy. Current Opinion in Neurobiology, 2004, 14(5): 599–609

    [14] Kuang C, Li S, Liu W, Hao X, Gu Z, Wang Y, Ge J, Li H, Liu X. Breaking the diffraction barrier using fluorescence emission difference microscopy. Scientific Reports, 2013, 3: 1441

    [15] Farahani J N, Schibler M J, Bentolila L A. Stimulated emission depletion (STED) microscopy: from theory to practice. Microscopy: Science, Technology, Applications and Education, 2010, 2: 1539– 1547

    [16] Hewlett S J, Wilson T. Resolution enhancement in threedimensional confocal microscopy. Machine Vision and Applications, 1991, 4(4): 233–242

    [17] Heintzmann R, Sarafis V, Munroe P, Nailon J, Hanley Q S, Jovin T M. Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes. Micron, 2003, 34(6-7): 293–300

    [18] Wilson T, Hamilton D K. Difference confocal scanning microscopy. Optica Acta: International Journal of Optics, 1984, 31(4): 453–465

    [19] Sheppard C J R, Cogswell C J. Confocal microscopy with detector arrays. Journal of Modern Optics, 1990, 37(2): 267–279

    [20] Dehez H, Piché M, Koninck Y D. High resolution imaging with TM01 laser beams. International Society for Optics and Photonics, 2009, 7386: 738606

    [21] Dehez H, Piché M, De Koninck Y. Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging. Optics Express, 2013, 21(13): 15912–15925

    [22] Fang Y, Wang Y, Kuang C, Liu X. Enhancing the resolution and contrast in CW-STED microscopy. Optics Communications, 2014, 322: 169–174

    [23] Hao X, Kuang C, Gu Z, Li S, Ge J, Liu X. Optical super-resolution by subtraction of time-gated images. Optics Letters, 2013, 38(6): 1001–1003

    [24] Horrocks M H, Palayret M, Klenerman D, Lee S F. The changing point-spread function: single-molecule-based super-resolution imaging. Histochemistry and Cell Biology, 2014, 141(6): 577–585

    [25] Pawley J. Handbook of Biological Confocal Microscopy. Berlin: Springer, 2010

    [26] Juette M F, Gould T J, Lessard M D, Mlodzianoski M J, Nagpure B S, Bennett B T, Hess S T, Bewersdorf J. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nature Methods, 2008, 5(6): 527–529

    [27] Zahreddine R N, Cormack R H, Cogswell C J. Simultaneous quantitative depth mapping and extended depth of field for 4D microscopy through PSF engineering. International Society for Optics and Photonics, 2012, 8227: 822705

    [28] Martínez-Corral M. Point spread function engineering in confocal scanning microscopy. International Society for Optics and Photonics, 2003, 5182: 112–122

    [29] Hell S W. Toward fluorescence nanoscopy. Nature Biotechnology, 2003, 21(11): 1347–1355

    [30] Keller J. Optimal de-excitation patterns for RESOLFT-microscopy. 2006, http://www.ub.uni-heidelberg.de/archiv/7163

    [31] Ding Y, Xi P, Ren Q. Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy. Chinese Science Bulletin, 2011, 56(18): 1857–1876

    [32] Hell SW, Jakobs S, Kastrup L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Applied Physics A, Materials Science & Processing, 2003, 77(7): 859–860

    [33] Vicidomini G, Sch nle A, Ta H, Han K Y, Moneron G, Eggeling C, Hell S W. STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLOS ONE, 2013, 8(1): e54421

    [34] Vicidomini G, Moneron G, Han K Y, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell S W. Sharper low-power STED nanoscopy by time gating. Nature Methods, 2011, 8(7): 571–573

    [35] Wang Y, Kuang C, Gu Z, Xu Y, Li S, Hao X, Liu X. Time-gated stimulated emission depletion nanoscopy. Optical Engineering (Redondo Beach, Calif), 2013, 52(9): 093107-1–093107-8

    [36] Boyer G, Sarafis V. Two pinhole superresolution using spatial filters. Optik-International Journal for Light and Electron Optics, 2001, 112(4): 177–179

    [37] Cox I J, Sheppard C J R, Wilson T. Reappraisal of arrays of concentric annuli as superresolving filters. Journal of the Optical Society of America, 1982, 72(9): 1287–1291

    [38] Cox I J, Sheppard C J R. Information capacity and resolution in an optical system. Journal of the Optical Society of America A, 1986, 3 (8): 1152–1158

    [39] Wang Y, Kuang C, Gu Z, Liu X. Image subtraction method for improving lateral resolution and SNR in confocal microscopy. Optics & Laser Technology, 2013, 48: 489–494

    [40] Okugawa H. A new imaging method for confocal microscopy. International Society for Optics and Photonics, 2008, 6860: 68600K-1–68600K-7

    [41] Gasecka A, Daradich A, Dehez H, Piché M, C té D. Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy. Optics Letters, 2013, 38(21): 4510–4513

    [42] Xue Y, Kuang C, Li S, Gu Z, Liu X. Sharper fluorescent superresolution spot generated by azimuthally polarized beam in STED microscopy. Optics Express, 2012, 20(16): 17653–17666

    [43] Li S, Kuang C, Hao X, Wang Y, Ge J, Liu X. Enhancing the performance of fluorescence emission difference microscopy using beam modulation. Journal of Optics, 2013, 15(12): 125708–125715

    [44] Hao X, Kuang C, Wang T, Liu X. Effects of polarization on the deexcitation dark focal spot in STED microscopy. Journal of Optics, 2010, 12(11): 115707

    [45] Rong Z, Li S, Kuang C, Xu Y, Liu X. Real-time super-resolution imaging by high-speed fluorescence emission difference microscopy. Journal of Modern Optics, 2014, 61(16): 1364–1371

    [46] Chmyrov A, Keller J, Grotjohann T, Ratz M, d’Este E, Jakobs S, Eggeling C, Hell S W. Nanoscopy with more than 100,000 ‘doughnuts’. Nature Methods, 2013, 10(8): 737–740

    Yue FANG, Cuifang KUANG, Ye MA, Yifan WANG, Xu LIU. Resolution and contrast enhancements of optical microscope based on point spread function engineering[J]. Frontiers of Optoelectronics, 2015, 8(2): 152
    Download Citation