• Photonics Research
  • Vol. 5, Issue 4, 340 (2017)
Richard Soref*
Author Affiliations
  • Department of Engineering, The University of Massachusetts at Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA (Richard.Soref@umb.edu)
  • show less
    DOI: 10.1364/PRJ.5.000340 Cite this Article Set citation alerts
    Richard Soref. Design of low-energy on-chip electro-optical 1  ×  M wavelength-selective switches[J]. Photonics Research, 2017, 5(4): 340 Copy Citation Text show less
    References

    [1] A. Sahara, H. Kawahara, S. Yamamoto, S. Kawai, M. Fukutoku, T. Mizuno, Y. Miyamoto, K. Suzuki, K. Yamaguchi. Proposal and experimental demonstration of SDM node enabling path assignment to arbitrary wavelengths, cores, and directions. Opt. Express, 25, 4061-4075(2017).

    [2] H. Asakura, K. Sugiyama, H. Tsuda. Design of a 1  ×  2 wavelength selective switch using an arrayed-waveguide grating with fold-back paths on a silicon platform. Optoelectronics and Communications Conference, WA2-105(2016).

    [3] H. Asakura, T. Yoshida, H. Tsuda, K. Suzuki, K. Tanizawa, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, K. Ikeda, S. Namiki, H. Kawashima. A 200-GHz spacing, 17-channel, 1  ×  2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback. 2015 International Conference on Photonics in Switching(2015).

    [4] Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, H. Tsuda. Low-loss integrated 1  ×  2 gridless wavelength selective switch with a small number of waveguide crossings. European Conference and Exhibition on Optical Communication, Tu.3.E.5(2012).

    [5] C. R. Doerr, L. L. Buhl, L. Chen, N. Dupuis. Monolithic flexible-grid 1  ×  2 wavelength-selective switch in silicon photonics. J. Lightwave Technol., 30, 473-478(2012).

    [6] K. Miura, Y. Shoji, T. Mizumoto. Silicon waveguide wavelength-selective switch for on-chip WDM communications. IEEE Photonics Conference (IPC), 630-631(2012).

    [7] J. Song, X. Luo, Q. Fang, L. Jia, X. Tu, T. Liow, M. Yu, G. Lo. Silicon-based 2  ×  2 colorless wavelength selective switch for optical interconnect application. Optical Fiber Communication Conference, OM2J.2(2012).

    [8] R. Soref, J. Hendrickson. Proposed ultralow-energy dual nanobeam devices for on-chip N  ×  N switching, logic and wavelength multiplexing. Opt. Express, 23, 32582-32596(2015).

    [9] H. Zhou, C. Qiu, X. Jiang, Q. Zhu, Y. He, Y. Zhang, Y. Su, R. Soref. Compact, submilliwatt, 2  ×  2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photon. Res., 5, 108-112(2017).

    [10] R. Soref. Resonant and slow-light 2  ×  2 switches enabled by nanobeam and grating-coupled waveguides. Session IP5 at Progress in Electromagnetics Research Symposium (PIERS) (Invited Paper)(2017).

    [11] C. V. Poulton, X. Zeng, M. T. Wade, M. A. Popovic. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode. Opt. Lett., 40, 4206-4210(2015).

    [12] L. Lu, L. Zhou, Z. Li, X. Li, J. G. Chen. Broadband 4  ×  4 nonblocking silicon electrooptic switches based on Mach-Zehnder interferometers. IEEE Photon. J., 7, 7800108(2015).

    [13] H. Zhou, C. Qiu, J. Wu, B. Liu, X. Jiang, J. Peng, Z. Xu, Y. Zhang, R. Liu, Y. Su, R. Soref. 2  ×  2 electro-optical switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities. Conference on Lasers and Electro-Optics, JTh2A(2016).

    [14] R. Soref, J. R. Hendrickson, J. Sweet. Simulation of germanium nanobeam electro-optical 2  ×  2 switches and 1  ×  1 modulators for the 2 to 5  μm infrared region. Opt. Express, 24, 9369-9382(2016).

    Richard Soref. Design of low-energy on-chip electro-optical 1  ×  M wavelength-selective switches[J]. Photonics Research, 2017, 5(4): 340
    Download Citation