• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 6, 523 (2022)
LI Pei1、*, HE Chaohui1, GUO Hongxia2, ZHANG Jinxin3, WEI Jia'nan4, and LIU Mohan5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.11805/tkyda2021443 Cite this Article
    LI Pei, HE Chaohui, GUO Hongxia, ZHANG Jinxin, WEI Jia'nan, LIU Mohan. Advance in space radiation effects of SiGe heterojunction bipolar transistors[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(6): 523 Copy Citation Text show less
    References

    [1] APPASWAMY A. Operation of inverse mode SiGe HBTs and ultra-scaled CMOS devices in extreme environments[D]. Atlanta,USA:Georgia Institute of Technology, 2009.

    [2] CRESSLER J D. SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications[J]. IEEE Transactions on Microwave Theory and Techniques, 1998,46(5):572-589.

    [3] CRESSLER J D. Re-engineering silicon:Si-Ge heterojunction bipolar technology[J]. IEEE Spectrum, 1995,32(3):49-55.

    [4] CRESSLER J D. SiGe BiCMOS technology: an IC design platform for extreme environment electronics applications[C]// 2007 IEEE International Reliability Physics Symposium Proceedings. Phoenix,AZ,USA:IEEE, 2007:141-149.

    [5] WEINREB S,BARDIN J C,MANI H. Design of cryogenic SiGe low-noise amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2007,55(11):2306-2312.

    [6] KRITHIVASAN R, LU Y, NAJAFIZADEH L, et al. A high-slew rate SiGe BiCMOS operational amplifier for operation down to deep cryogenic temperatures[C]// IEEE Bipolar/BiCMOS Circuits and Technology Meeting. Maastricht,Netherlands:IEEE, 2006: 1-4.

    [7] PRUVOST S, DELCOURT S, TELLIEZ I, et al. Microwave and noise performance of SiGe BiCMOS HBT under cryogenic temperatures[J]. IEEE Electron Device Letters, 2005,26(2):105-108.

    [8] INANLOU F, LOURENCO N E, FLEETWOOD Z E, et al. Impact of total ionizing dose on a 4th generation, 90 nm SiGe HBT Gaussian pulse generator[J]. IEEE Transactions on Nuclear Science, 2014,61(6):3050-3054.

    [9] HEGDE V N, PRADEEP T M, PUSHPA N, et al. A comparison of electron, proton and gamma irradiation effects on the IV characteristics of 200 GHz SiGe HBTs[J]. IEEE Transactions on Device and Materials Reliability, 2018,18(4):592-598.

    [10] VONNO N V,LUCAS R,THORNBERRY D. Total dose hardness of a commercial SiGe BiCMOS technology[C]// IEEE Radiation and Its Effects on Components and Systems. Fontevraud,France:IEEE, 1999:414-417.

    [11] ROLDHN J, ANSLEY W E, CRESSLER J D, et al. Neutral radiation tolerance of advanced UHV/CVD SiCe HBTs[J]. IEEE Transactions on Nuclear Science, 1997,44(6):1965-1973.

    [12] METCALFE J,DORFAN D E,GRILLO A A,et al. Evaluation of the radiation tolerance of SiGe heterojunction bipolar transistors under 24 GeV proton exposure[J]. IEEE Transactions on Nuclear Science, 2006,53(2):3889-3893.

    [13] HANSEN D L,PONG S,ROSENTHAL P,et al. Total ionizing dose testing of SiGe 7HP discrete heterojunction bipolar transistors for ELDRS effects[C]// IEEE NSREC Data Workshop. Honolulu,HI,USA:IEEE, 2007:215-220.

    [14] REED R A,MARSHALL P W,PICKEL J C,et al. Heavy-ion broad-beam and microprobe studies of single-event upsets in 0.20 μm SiGe heterojunction bipolar transistors and circuits[J]. IEEE Transactions on Nuclear Science, 2003,50(6):2184-2190.

    [15] PELLISH J A,REED R A,SCHRIMPF R D,et al. Substrate engineering concepts to mitigate charge collection in deep trench isolation technologies[J]. IEEE Transactions on Nuclear Science, 2006,53(6):3298-3305.

    [16] VIZKELETHY G, PHILLIPS S D, NAJAFIZADEH L, et al. Nuclear microbeam studies of Silicon-Germanium Heterojunction Bipolar Transistors(HBTs)[J]. Nuclear Instruments and Methods in Physics Research Section B, 2010,268(11-12):2092-2098.

    [17] PATTON G L, IYER S S, DELAGE S L, et al. Silicon-Germanium base heterojunction bipolar transistors by molecular beam epitaxy[J]. IEEE Electron Device Letters, 1988,9(4):165-167.

    [18] FISCHER S E,COOK R K,KNEPPER R W,et al. A 45 GHz strained-layer SiGe heterojunction bipolar transistor fabricated with low temperature epitaxy[C]// International Technical Digest on Electron Devices Meeting. Washington, DC, USA: IEEE, 1989: 890-892.

    [19] PATTON G L,COMFORT J H,MEYERSON B S,et al. 75 GHz fT SiGe-base heterojunction bipolar transistors[J]. IEEE Electron Device Letters, 1990,11(4):171-173.

    [20] CRABBE E F,MEYERSON B S,STORK J M C,et al. Vertical profile optimization of very high frequency epitaxial Si and SiGe-base bipolar transistors[C]// IEEE International Electron Devices Meeting(IEDM). Washington,DC,USA:IEEE, 1994:83-86.

    [21] AHLGREN D C,GILBERT M,GREENBERG D,et al. Manufacturability demonstration of an integrated SiGe HBT technology for the analog and wireless marketplace[C]// International Electron Devices Meeting Technical Digest. San Francisco, CA, USA: IEEE, 1996:859-862.

    [22] WASHIO K. SiGe HBT and BiCMOS technologies[C]// IEEE International Electron Devices Meeting 2003. Washington, USA: IEEE, 2003.

    [23] PEIYI C. Development of SiGe materials and devices[C]// 6th International Conference on Solid-State and Integrated Circuit Technology. Shanghai,China:IEEE, 2001:570-574.

    [24] HEINEMANN B, RǖCKER H, BARTH R, et al. SiGe HBT with fT/fmax of 505 GHz/720 GHz[C]// IEEE International Electron Devices Meeting(IEDM). San Francisco,CA,USA:IEEE, 2016:1-4.

    [25] LABEL K A,SAMPSON M J. The NASA Electronic Parts and Packaging(NEPP) program:roadmap for NASA's radiation effects on and reliability of electronics efforts-update[C]// Government Microcircuits Application Conference. San Diego, USA: [s. n.], 2006.

    [26] MARSHALL P,CHEN D,PELLISH J,et al. SiGe technology-radiation update[C]// NASA Electronic Parts and Packaging(NEPP) Program Electronic Technology Workshop. Greenbelt,Maryland:[s.n.], 2011.

    [27] JIANG N, MA Z, MA P, et al. Impact of proton radiation on the large-signal power performance of SiGe power HBTs[J]. IEEE Transactions on Nuclear Science, 2006,53(4):2361-2366.

    [28] LABEL K A, SAMPSON M J. The NASA Electronic Parts and Packaging(NEPP) program-parts, packaging, and radiation reliability research on electronics[C]// The Netherlands:European Space Components Conference. Noordwijk,NE:[s.n.], 2013.

    [29] CRESSLER J D. On the potential of SiGe HBTs for extreme environment electronics[J]. Proceedings of the IEEE, 2005,93(9): 1559-1582.

    [30] NIU G F, MA R, LUO L, et al. Wide temperature range SiGe HBT noise parameter modeling and LNA design for extreme environment electronics[J]. International Journal of Numerical Modelling Electronic Networks Devices & Fields, 2015, 28(6): 675-683.

    [31] NIU G F. Enablement and optimization of SiGe HBTs for extreme environment electronics[J]. The Electrochemical Society, 2010,33(6):287-299.

    [32] LIU B,CHEN S,LIANG B,et al. Temperature dependency of charge sharing and MBU sensitivity in 130 nm CMOS technology[J]. IEEE Transactions on Nuclear Science, 2009,56(4):2473-2479.

    [33] YUAN J. Cryogenic operation of silicon-germanium heterojunction bipolar transistors and its relation to scaling and optimization[D]. Atlanta,USA:Georgia Institute of Technology, 2010.

    [34] BABCOCK J A,CRESSLER J D,VEMPATI L S,et al. Ionizing radiation tolerance and low-frequency noise degradation in UHV/ CVD SiGe HBT's[J]. IEEE Electron Device Letter, 1995,16(8):351-353.

    [35] BELLINI M, JUN B, SUTTON A K, et al. The effects of proton and X-ray irradiation on the DC and AC performance of complementary(npn+pnp) SiGe HBTs on thick-film SOI[J]. IEEE Transactions on Nuclear Science, 2007,54(6):2245-2250.

    [36] CHEN T,SUTTON A K,BELLINI M,et al. Proton radiation effects in vertical SiGe HBTs fabricated on CMOS-compatible SOI[J]. IEEE Transactions on Nuclear Science, 2005,52(6):2353-2357.

    [37] CRESSLER J D,KRITHIVASAN R,ZHANG G,et al. An investigation of the origins of the variable proton tolerance in multiple SiGe HBT BiCMOS technology generations[J]. IEEE Transactions on Nuclear Science, 2002,49(8):3203-3207.

    [41] LIU M H,LU W,MA W Y,et al. Total ionizing dose effects of domestic SiGe HBTs under different dose rates[J]. Chinese Physics C, 2016,40(3):036003.

    [42] ZHANG J, GUO Q, GUO H, et al. Impact of bias conditions on total ionizing dose effects of 60Co-γ in SiGe HBT[J]. IEEE Transactions on Nuclear Science, 2016,63(2):1251-1258.

    [44] HANSEN D L,PONG S,ROSENTHAL P,et al. Total ionizing dose testing of SiGe 7HP discrete heterojunction bipolar transistors for ELDRS effects[C]// 2007 IEEE Radiation Effects Data Workshop. Honolulu,USA:IEEE, 2007:215-220.

    [45] FLEETWOOD Z E, CARDOSO A S, SONG I, et al. Evaluation of enhanced low dose rate sensitivity in fourth-generation SiGe HBTs[J]. IEEE Transactions on Nuclear Science, 2014,61(6):2915-2922.

    [46] ZHANG Jinxin, GUO Hongxia, REN Diyuan, et al. Dose rate effects of SiGe HBT for Gamma rays under different biases[C]// IEEE Nuclear and Space Radiation Effects Conference. San Francisco,USA:IEEE, 2013.

    [47] LI Pei, HE Chaohui, GUO Hongxia, et al. An investigation of ELDRS in different SiGe processes[J]. IEEE Transactions on Nuclear Science, 2017,64(5):1137-1141.

    [49] SUN Y, FU J, XU J, et al. Investigation of bias dependence on enhanced low dose rate sensitivity in SiGe HBTs for space application[J]. Nuclear Instruments and Methods in Physics Research Section A, 2014,738(2):82-86.

    [50] SUN Y, FU J, XU J, et al. Bias dependence of ionizing radiation damage in SiGe HBTs at different dose rates[J]. Physica B: Condens Matter, 2014,434(2):95-100.

    [51] PeLLISH J A, REED R A, MCMORROW D, et al. Heavy ion microbeam-and broadbeam-induced transients in SiGe HBTs[J]. IEEE Transactions on Nuclear Science, 2009,56(6):3078-3084.

    [52] LOURENCO N E, FLEETWOOD Z E, ILDEFONSO A, et al. The impact of technology scaling on the single-event transient response of SiGe HBTs[J]. IEEE Transactions on Nuclear Science, 2017,64(1):406-414.

    [53] OMPRAKASH A P,ILDEFONSO A,FLEETWOOD Z E,et al. The effects of temperature on the single-event transient response of a high-voltage(>30 V) complementary SiGe-on-SOI technology[J]. IEEE Transactions on Nuclear Science, 2019,66(1):389-396.

    [54] XU Z,NIU G,LUO L,et al. Charge collection and SEU in SiGe HBT current mode logic operating at cryogenic temperatures[J]. IEEE Transactions on Nuclear Science, 2010,57(6):3206-3211.

    [55] CRESSLER J D. Radiation effects in SiGe technology[J]. IEEE Transactions on Nuclear Science, 2013,60(3):1992-2014.

    [56] MARSHALL P,CARTS M,CURRIE S,et al. Autonomous bit error rate testing at multi-gbit/s rates implemented in a 5AM SiGe Circuit for Radiation Effects Self Test(CREST)[J]. IEEE Transactions on Nuclear Science, 2005,52(6):2446-2454.

    [58] ZHANG Jinxin, HE Chaohui, GUO Hongxia, et al. 3D simulation study of single event effects of SiGe heterojunction bipolar transistor in extreme environment[J]. Microelectronics Reliability, 2015,55(8):1180-1186.

    [59] ZHANG Jinxin, GUO Hongxia, WEN Lin, et al. 3D simulation of angled strike heavy-ion induced charge collection in silicon-germanium heterojunction bipolar transistors[J]. Journal of Semiconductors, 2014,35(4):56-61.

    [60] ZHANG Jinxin, HE Chaohui, GUO Hongxia, et al. Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor[J]. Chinese Physics B, 2017,26(8):542-550.

    [61] LI Pei,GUO Hongxia,GUO Qi,et al. Laser-induced single event transients in local oxidation of silicon and deep trench isolation silicon-germanium heterojunction bipolar transistors[J]. Chinese Physics Letters, 2015,32(8):088505.

    [62] LI Pei,GUO Hongxia,GUO Qi,et al. Single-event response of the SiGe HBT in TCAD simulations and laser microbeam experiment[J]. Chinese Physics B, 2015,24(8):088502.

    [63] ZHANG Jinxin, GUO Hongxia, ZHANG Fengqi, et al. Heavy ion micro-beam study of Single-Event Transient(SET) in SiGe Heterjunction Bipolar Transistor[J]. Science China Information Sciences, 2017,60(12):116-118.

    [64] WEI Jianan,LI Yong,YANG Weitao,et al. Proton-induced current transient in SiGe HBT and charge collection model based on Monte Carlo simulation[J]. Science China Technological Sciences, 2020,63(5):851-858.

    [65] NIU G, YANG H, VARADHARAJAPERUMAL M, et al. Simulation of a new back junction approach for reducing charge collection in 200 GHz SiGe HBTs[J]. IEEE Transactions on Nuclear Science, 2005,52(6):2153-2157.

    [66] VARADHARAJAPERUMAL M, NIU G, WEI X, et al. 3D simulation of SEU mitigation of SiGe HBTs using shared dummy collector[J]. IEEE Transactions on Nuclear Science, 2007,54(6):2330-2337.

    [67] SUTTON A K,BELLINI M,CRESSLER J D,et al. An evaluation of transistor-layout RHBD techniques for SEE mitigation in SiGe HBTs[J]. IEEE Transactions on Nuclear Science, 2007,54(6):2044-2052.

    [69] ZHANG Jinxin,GUO Hongxia,PAN Xiaoyu,et al. Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor[J]. Chinese Physics B, 2018,27(10):108501.

    [70] LI X,YANG J,LIU C,et al. Synergistic effects of NPN transistors caused by combined proton irradiations with different energies[J]. Microelectronics Reliability, 2018(82):130-135.

    [71] LI X,LIU C,YANG J. Synergistic effect of ionization and displacement damage in NPN transistors caused by protons with various energies[J]. IEEE Transactions on Nuclear Science, 2015,62(3):1375-1382.

    [72] WANG C, BAI X, CHEN W, et al. Simulation of synergistic effects on lateral PNP bipolar transistors induced by neutron and gamma irradiation[J]. Nuclear Instruments and Methods in Physics Research Section A, 2015(796):108-113.

    LI Pei, HE Chaohui, GUO Hongxia, ZHANG Jinxin, WEI Jia'nan, LIU Mohan. Advance in space radiation effects of SiGe heterojunction bipolar transistors[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(6): 523
    Download Citation