• Chinese Journal of Lasers
  • Vol. 46, Issue 10, 1002006 (2019)
Xiaoyang Qin*, Ting Huang*, and Rongshi Xiao
Author Affiliations
  • High-Power and Ultrafast Laser Manufacturing Laboratory, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/CJL201946.1002006 Cite this Article Set citation alerts
    Xiaoyang Qin, Ting Huang, Rongshi Xiao. Periodic Microstructure on Ti Surface Induced by High-Power Green Femtosecond Laser[J]. Chinese Journal of Lasers, 2019, 46(10): 1002006 Copy Citation Text show less
    References

    [1] Shank C V, Ippen E P. Subpicosecond kilowatt pulses from a mode-locked CW dye laser[J]. Applied Physics Letters, 24, 373-375(1974). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1068270

    [2] Zhang F T, Nie Z G, Qiu J R. Realization of optical modulation in germanium oxide glass by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 45, 1202006(2018).

    [3] Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).

    [4] Bonse J, Höhm S, Koter R et al. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium[J]. Applied Surface Science, 374, 190-196(2016). http://www.sciencedirect.com/science/article/pii/S0169433215026987

    [5] Cunha A, Elie A M, Plawinski L et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of staphylococcus aureus and biofilm formation[J]. Applied Surface Science, 360, 485-493(2016). http://adsabs.harvard.edu/abs/2016ApSS..360..485C

    [6] Huang J H, Liang G W, Li J et al. Femtosecond laser processing of polycrystalline diamond micro-structure array[J]. Chinese Journal of Lasers, 44, 0302007(2017).

    [7] Xing S L, Liu L, Zou G S et al. Effects of femtosecond laser parameters on hole drilling of silica glass[J]. Chinese Journal of Lasers, 42, 0403001(2015).

    [8] Zhou H B, Li C, Zhou Z K et al. Femtosecond laser-induced periodic surface microstructure on dental zirconia ceramic[J]. Materials Letters, 229, 74-77(2018). http://www.sciencedirect.com/science/article/pii/S0167577X18309650

    [9] Shen M Y, Crouch C H, Carey J E et al. Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask[J]. Applied Physics Letters, 82, 1715-1717(2003). http://scitation.aip.org/content/aip/journal/apl/82/11/10.1063/1.1561162

    [10] Miyagawa R, Ohno Y, Deura M et al. Characterization of femtosecond-laser-induced periodic structures on SiC substrates[J]. Japanese Journal of Applied Physics, 57, 025602(2018).

    [11] Lee B E J, Exir H, Weck A et al. . Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants[J]. Applied Surface Science, 441, 1034-1042(2018). http://adsabs.harvard.edu/abs/2018ApSS..441.1034L

    [12] Zhan Z B, Li Z H, Yu Z et al. Superhydrophobic Al surfaces with properties of anticorrosion and reparability[J]. ACS Omega, 3, 17425-17429(2018). http://pubs.acs.org/doi/10.1021/acsomega.8b02631

    [13] Bonse J, Kirner S, Griepentrog M et al. Femtosecond laser texturing of surfaces for tribological applications[J]. Materials, 11, E801(2018). http://europepmc.org/abstract/MED/29762544

    [14] Liedl G, Pospichal R, Murzin S P. Features of changes in the nanostructure and colorizing of copper during scanning with a femtosecond laser beam[J]. Computer Optics, 41, 504-509(2017). http://www.mathnet.ru/rus/co412

    [15] Moradi S, Kamal S, Hatzikiriakos S G. Superhydrophobic laser ablated stainless steel substrates exhibiting[J]. Surface Innovations, 3, 151-163(2015).

    [16] Jiang D F, Fan P X, Gong D W et al. High-temperature imprinting and superhydrophobicity of micro/nano surface structures on metals using molds fabricated by ultrafast laser ablation[J]. Journal of Materials Processing Technology, 236, 56-63(2016). http://www.sciencedirect.com/science/article/pii/S0924013616301418

    [17] Vorobyev A Y, Topkov A N, Gurin O V et al. Enhanced absorption of metals over ultrabroad electromagnetic spectrum[J]. Applied Physics Letters, 95, 121106(2009). http://scitation.aip.org/content/aip/journal/apl/95/12/10.1063/1.3227668

    [18] Wu S Z, Li C Z, Jiao Y L et al. Multifunctional oil-water and immiscible organic liquid separation by micropore arrayed Ti foil[J]. Applied Surface Science, 455, 221-226(2018). http://www.sciencedirect.com/science/article/pii/S0169433218315083

    [19] Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B, 14, 2716-2722(1997). http://spie.org/Publications/Proceedings/Paper/10.1117/12.617375

    [20] Povarnitsyn M E, Itina T E, Sentis M et al. Material decomposition mechanisms in femtosecond laser interactions with metals[J]. Physical Review B, 75, 235414(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000006000007000143000001&idtype=cvips&gifs=Yes

    [21] Christensen B H, Balling P. Modeling ultrashort-pulse laser ablation of dielectric materials[J]. Physical Review B, 79, 155424(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000008000005000130000001&idtype=cvips&gifs=Yes

    [22] Liang J C, Liu W D, Li Y et al. A model to predict the ablation width and calculate the ablation threshold of femtosecond laser[J]. Applied Surface Science, 456, 482-486(2018). http://www.sciencedirect.com/science/article/pii/S016943321831660X

    [23] Mannion P, Magee J, Coyne E et al. Ablation thresholds in ultrafast laser micromachining of common metals in air[J]. Proceedings of SPIE, 4876, 470-478(2003). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1315387

    [24] Mannion P T, Magee J, Coyne E et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J]. Applied Surface Science, 233, 275-287(2004). http://www.sciencedirect.com/science/article/pii/S0169433204004799

    [25] Nathala C S R, Ajami A, Ionin A A et al. . Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium[J]. Optics Express, 23, 5915-5929(2015). http://www.ncbi.nlm.nih.gov/pubmed/25836818

    [26] Kuladeep R, Dar M H. Deepak K L N, et al. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids[J]. Journal of Applied Physics, 116, 113107(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6906213

    [27] Birnbaum M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 36, 3688-3689(1965). http://scitation.aip.org/content/aip/journal/jap/36/11/10.1063/1.1703071

    [28] Zhang W, Cheng G H, Feng Q. Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation[J]. Applied Surface Science, 263, 436-439(2012). http://www.sciencedirect.com/science/article/pii/S0169433212016054

    [29] Zhou S Q, Ma G J, Wang C H et al. Rule of morphology variation of Ti alloy surface induced by femtosecond lasers[J]. Chinese Journal of Lasers, 43, 0902003(2016).

    Xiaoyang Qin, Ting Huang, Rongshi Xiao. Periodic Microstructure on Ti Surface Induced by High-Power Green Femtosecond Laser[J]. Chinese Journal of Lasers, 2019, 46(10): 1002006
    Download Citation