• Chinese Journal of Lasers
  • Vol. 42, Issue 11, 1106006 (2015)
Wang Ji*, Han Junhe, Zhu Baohua, Dai Shuxi, Tan Yunlong, and Gu Yuzong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201542.1106006 Cite this Article Set citation alerts
    Wang Ji, Han Junhe, Zhu Baohua, Dai Shuxi, Tan Yunlong, Gu Yuzong. Third-Order Nonlinear Optical Properties of Graphene-CdS Composites[J]. Chinese Journal of Lasers, 2015, 42(11): 1106006 Copy Citation Text show less
    References

    [1] Yang Y F, Li M, Xie Y L, et al.. Fabrication CdS nanoparticles on the edges of reduced grapheme oxide sheets with P2VP polymer brushes [J]. Materials Letters, 2014, 118: 184-187.

    [2] Li Shiguo, Wang Xinzhong, Zhou Zhiwen, et al.. Developing bottlenecks of quasi-zero-dimensional quantum dot lasers[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030006.

    [3] He Zhicong, Li Fang. Optical properties of third-order nonlinearities of CdSeS quantum dots/polystyrene composite film[J]. Chinese J Lasers, 2013, 40(10): 1007001.

    [4] Zeng Feng, Zhu Xiaojun, Wang Wei, et al.. Research on background of the CdSe/ZnS quantum-dot doped fiber[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010606.

    [5] Venkatram N, Rao D N, Akundi M A. Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles[J]. Optics Express, 2005, 13(3): 867-872.

    [6] Lami J F, Hirlimann C. Two-photon excited room-temperature luminescence of CdS in the femtosecond regime[J]. Physical Review B, 1999, 60(7): 4763-4770.

    [7] Etienne M, Biney A, Walser A D, et al.. Third-order nonlinear optical properties of a cadmium sulfide-dendrimer nanocomposite[J]. Appl Phys Lett, 2005, 87(18): 181913.

    [8] Britt J, Ferekides C. Thin-film CdS/CdTe solar cell with 15.8 percent efficiency[J]. Appl Phys Lett, 1993, 62(22): 2851-2852.

    [9] Chun S, Jung Y, Kim J, et al.. The analysis of CdS thin film at the processes of manufacturing CdS/CdTe solar cells[J]. Journal of Crystal Growth, 2011, 326(1): 152-156.

    [10] Li Q, Gou B D, Yu J G, et al.. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated grapheme nanosheets[J]. Journal of the American Chemical Society, 2011, 133(28): 10878-10884.

    [11] Sheeney-Haj-Ichia L, Basnar B, Willner I, et al.. Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes[J]. Angew Chem Int Ed, 2005, 44(1): 78-83.

    [12] Hoffman A J, Mills G, Yee H, et al.. Q- sized cadmium sulfide: Synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers[J]. J Chem Phys, 1992, 96(13): 5546-5552.

    [13] Entezari M H, Ghows N. Micro-emulsion under ultrasound facilitates the fast synthesis of quantum dots of CdS at low temperature[J]. Ultrasonics Sonochemistry, 2011, 18(1): 127-134.

    [14] Yang Xinyu, Xiang Weidong, Zhang Xiyan, et al.. Z-scan analysis for CdS nanocrystals embedded in glass with third-order optical nonlinearities[J]. Infrared and Laser Engineering, 2010, 39(4): 694-697.

    [15] Lin Y, Zhang J, Kumacheva E, et al.. Third-order optical nonlinearity and figure of merit of CdS nanocrystals chemically stabilized in spin-processable polymeric films[J]. Journal of Materials Science, 2004, 39(3): 993-996.

    [16] Ahmad H, Muhammad F D, Zulkifli M Z, et al.. Q-switched pulse generation from an all-fiber distributed Bragg reflector laser using graphene as saturable absorber[J]. Chin Opt Lett, 2013, 11(7): 071401.

    [17] Liang Li, Lin Zhenghui, Chen Shi, et al.. Graphene passively Q-switching for dual-wavelength lasers at 1064 nm and 1342 nm in Nd∶YVO4 laser[J]. Chinese J Lasers, 2014, 41(4): 0402009.

    [18] Wang K, Liu Q, Wu X Y, et al.. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing[J]. Talanta, 2010, 82(1): 372-376.

    [19] Zhou Tian, Chen Bingdi, Yao Aihua, et al.. CdS/graphene nanohybrids: Facile ultrasonic synthesis and photocatalytic performance[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(2): 231-236.

    [20] Min Shixiong, Lü Gongxuan. Preparation of CdS/graphene composites and photocatalytic hydrogen generation form water under visible light irradiation[J]. Acta Physico-Chimica Sinica, 2011, 27(9): 2178-2184.

    [21] Park C Y, Kefayat U, Vikram N, et al.. Preparation of novel CdS-graphene/TiO2 composites with high photocatalytic activity for methylene blue dye under visible light[J]. Bulletin of Materials Science, 2013, 36(5): 869-876.

    [22] Feng M, Sun R Q, Zhan H B, et al.. Lossless synthesis of grapheme nanosheets decorated with tiny cadmium sulphide quantum dots with excellent nonlinear optical properties[J]. Nanotechnology, 2010, 21(7): 075601.

    [23] Ouyang Q Y, Yu H L, Xu Z, et al.. Synthesis and enhanced nonlinear optical properties of graphene/CdS organic glass[J]. Appl Phys Lett, 2013, 102(3): 031912.

    [24] Marcano D C, Kosynkin D V, Berlin J M, et al.. Improved synthesis of gaphene oxid[J]. ACS Nano, 2010, 4(8): 4806-4814.

    [25] Cao A N, Liu Z, Chu S S, et al.. A facile one-step method to produce grapheme-CdS quantum dot nanocomposites as promising optoelectronic materials[J]. Advanced Materials, 2010, 22(1): 103-106.

    [26] Sheik B M, Said A A, Wei T H, et al.. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE Journal of Quantum Electronics, 1990, 26(4): 760-769.

    [27] Pan S G, Liu X H. CdS-graphene nanocomposite: Synthesis, adsorption kinetics and high photocatalytic performance under visible light irradiation[J]. New Journal of Chemistry, 2012, 9(9): 1781-1787.

    [28] Zhang N, Yang M Q, Tang Z R, et al.. CdS-graphene nanocomposites as visible light photocatalyst for redox reactions in water: A green route for selective transformation and environmental remediation[J]. Journal of Catalysis, 2013, 303(7): 60-69.

    [29] Zhang Y H, Tang Z R, Fu X Z, et al.. TiO2 graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2 graphene truly different from other TiO2 carbon composite materials[J]. ACS Nano, 2010, 4(12): 7303-7314.

    [30] Zhang Y H, Zhang N, Tang Z R, et al.. Improving the photocatalytic performance of grapheme-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact[J]. Physical Chemistry Chemical Physics, 2012, 14(25): 9167-9175.

    [31] Zhang Y, Zhang N, Tang Z R, et al.. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer[J]. ACS Nano, 2012, 6(11): 9777-9789.

    [32] Zhu Baohua, Wang Fangfang, Zhang Kun, et al.. Linear and nonlinear optical properties of CdSe quantum dots[J]. Acta Physica Sinica, 2008, 57(10): 6557-6564.

    [33] Zhao Xin, Yan Xiaoqing, Ma Qiang, et al.. Optical nonlinearities of reduced graphene oxide[J]. Acta Optica Sinica, 2013, 33(7): 0719001.

    [34] Zhang H, Stéphane V, Bao Q L, et al.. Z-scan measurement of the nonlinear index of graphene[J]. Opt Lett, 2012, 37(11): 1856-1858.

    CLP Journals

    [1] Wu Yuxia, Miao Yanming, Yang Maoqing, Li Yan, Yan Guiqin. Detection of Mitoxantrone Based on Mn-Doped ZnS Quantum Dots/CTAB Nanohybrids[J]. Acta Optica Sinica, 2016, 36(5): 516001

    [2] Jiang Shengbao, Tang Bin. Propagation Properties of Anomalous Vortex Beam in Chiral Medium[J]. Laser & Optoelectronics Progress, 2016, 53(9): 92601

    [3] Guo Bo, Ouyang Qiuyun, Li Shi, Fang Zaijin, Wang Pengfei. Dual-Wavelength Soliton Laser Based on Graphene Ternary Composite[J]. Chinese Journal of Lasers, 2017, 44(7): 703012

    Wang Ji, Han Junhe, Zhu Baohua, Dai Shuxi, Tan Yunlong, Gu Yuzong. Third-Order Nonlinear Optical Properties of Graphene-CdS Composites[J]. Chinese Journal of Lasers, 2015, 42(11): 1106006
    Download Citation