• Semiconductor Optoelectronics
  • Vol. 41, Issue 4, 509 (2020)
HUANG Junlin1,2, FAN Weitao1,2, ZHANG Xin1,2, CHENG Jing1,2, and SHEN Honglie1,*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2020.04.011 Cite this Article
    HUANG Junlin, FAN Weitao, ZHANG Xin, CHENG Jing, SHEN Honglie. Effect of Silver Residue in MACE Process on the Performance of Solar Cells[J]. Semiconductor Optoelectronics, 2020, 41(4): 509 Copy Citation Text show less
    References

    [1] Chen Chunming, Shen Honglie, Li Yanqi, et al. Study on acid texturization of diamond wire sawn multicrystalline silicon[J]. Semiconductor Optoelectronics, 2019, 40(2): 6872, 78.

    [2] Liu Xiaomei. Studies of surface properties and texturization methods of diamond wire sawn multicrystalline silicon wafers[D]. Nanchang: Nanchang University, 2014.

    [3] Tan Qiulin, Lu Fengxiang, Xue Chenyang, et al. Nanofabrication methods and novel applications of black silicon[J]. Sensors & Actuators: A. Physical, 2019, 295: 560573.

    [4] Yang Xiaoqin, Zhang Wan. Influence of bowllike nanostructures on the efficiency and module power of black silicon solar cells[J]. Solar Energy, 2019, 189: 6773.

    [5] Nam N. Investigation on surface morphological and optical properties of black silicon fabricated by metalassisted chemical etching with different etchant concentrations[C]// IOP Conf. Series: Earth and Environmental Science, 2019, 268: 18.

    [6] Auwal A, Azlan A, Mohd Z. Optimization of etching time for broadband absorption enhancement in black silicon fabricated by onestep electroless silverassisted wet chemical etching[J]. Optik, 2019, 187: 7480.

    [7] Zhang Pengfei, Sun Hengchao, Tao Ke, et al. An 18.9% efficient black silicon solar cell achieved through control of pretreatment of Ag/Cu MACE[J]. J. of Materials Science, 2019, 30(9): 8667867.

    [8] Nur A, Noor S. Effects of etching time towards broadband absorption enhancement in black silicon fabricated by silverassisted chemical etching[J]. Optik, 2019, 176: 586592.

    [9] Gao K, Shen H L, Liu Y W, et al. Enhanced etching rate of black silicon by Cu/Ni coassisted chemical etching process[J]. Materials Science in Semiconductor Processing, 2018, 88: 250255.

    [10] Sheng Guizhang, Zou Yuxin, Li Shaoyuan, et al. Controllable nanotexturing of diamond wire sawing polysilicon wafers through lowcost copper catalyzed chemical etching[J]. Materials Lett., 2018, 221: 8588.

    [11] Cao Fang, Chen Kexun, Zhang Jingjiao, et al. Nextgeneration multicrystalline silicon solar cells: Diamondwire sawing, nanotexture and high efficiency[J]. Solar Energy Materials and Solar Cells, 2015, 141: 132138.

    [12] Helene L, Erwann P, Sebastien D, et al. Controlling surface contamination issues in the fabrication environment of high efficiency crystalline siliconbased homojunction solar cells[J]. Energy Procedia, 2017, 124: 745751.

    [13] Sylke M, Stefanie W, Christian H. Advanced metal contamination analysis for high efficiency solar cell manufacturing[J]. Energy Procedia, 2016, 92: 369373.

    [14] Tleuzhan T, Sebastien D. Influence of copper contamination on the illuminated forward and dark reverse currentvoltage characteristics of multicrystalline ptype silicon solar cells[J]. Physica Status Solidi (c), 2014, 11: 1122.

    [15] Coletti G, Bronsveld P, Hahn G, et al. Impact of metal contamination in silicon solar cells[J]. Advanced Functional Materials, 2011, 21(5): 879890.

    [16] Yu Kun, Wang Zhanyou, Zheng Hailu,et al, Effect of impurity content of H2O2 on the texture of McSi[J]. Solar Energy, 2019(7): 4346.

    HUANG Junlin, FAN Weitao, ZHANG Xin, CHENG Jing, SHEN Honglie. Effect of Silver Residue in MACE Process on the Performance of Solar Cells[J]. Semiconductor Optoelectronics, 2020, 41(4): 509
    Download Citation