• Chinese Optics Letters
  • Vol. 19, Issue 11, 111405 (2021)
Qimeng Lin1、2、3, Li Yan1、2、3, Yuanqi Song1、2、3, Xuzhuo Jia1、2、3, Xiaoqiang Feng1、2、3, Lei Hou1、2、3、*, and Jintao Bai1、2、3、**
Author Affiliations
  • 1State Key Laboratory of Energy Photon-technology in Western China, Shaanxi Engineering Technology Research Center for Solid State Lasers and Application, Northwest University, Xi’an 710069, China
  • 2International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Provincial Key Laboratory of Photo-electronic Technology, Northwest University, Xi’an 710069, China
  • 3Institute of Photonics & Photon-technology, Northwest University, Xi’an 710069, China
  • show less
    DOI: 10.3788/COL202119.111405 Cite this Article Set citation alerts
    Qimeng Lin, Li Yan, Yuanqi Song, Xuzhuo Jia, Xiaoqiang Feng, Lei Hou, Jintao Bai. Switchable single- and dual-wavelength femtosecond mode-locked Er-doped fiber laser based on carboxyl-functionalized graphene oxide saturable absorber[J]. Chinese Optics Letters, 2021, 19(11): 111405 Copy Citation Text show less
    References

    [1] X. Fang, Z. Q. Wang, L. Zhan. Efficient generation of all-fiber femtosecond pulses at 1.7 µm via soliton self-frequency shift. Opt. Eng., 56, 046107(2017).

    [2] J. Luan, P. S. Russell, D. Novoa. Efficient self-compression of ultrashort near-UV pulses in air-filled hollow-core photonic crystal fibers. Opt. Express, 29, 13787(2021).

    [3] A. Zemaitis, M. Gaidys, P. Gecys, M. Barkauskas, M. Gedvilas. Femtosecond laser ablation by bibursts in the MHz and GHz pulse repetition rates. Opt. Express, 29, 7641(2021).

    [4] F. T. Zhang, X. H. Xie, X. J. Zhao, L. Ma, L. Lei, J. R. Qiu, Z. G. Nie. Polarization-dependent microstructural evolution induced by a femtosecond laser in an aluminosilicate glass. Opt. Express, 29, 10265(2021).

    [5] K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, F. Druon. Dual-color deep-tissue threephoton microscopy with a multiband infrared laser. Light Sci. Appl., 7, 12(2018).

    [6] F. Akhoundi, Y. K. Qin, N. Peyghambarian, J. K. Barton, K. Kieu. Compact fiber-based multi-photon endoscope working at 1700 nm. Biomed. Opt. Express, 9, 2326(2018).

    [7] D. Y. Shen, J. Qian, C. W. Wang, G. D. Wang, X. H. Wang, Q. Z. Zhao. Facile preparation of silver nanoparticles in bulk silicate glass by high-repetition-rate picosecond laser pulses. Chin. Opt. Lett., 19, 011901(2021).

    [8] J. B. Schlager, S. Kawanishi. Dual wavelength pulse generation using mode-locked erbium-doped fiber ring laser. Electron. Lett., 27, 2072(1991).

    [9] S. L. Pan, C. Y. Lou. Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation. IEEE Photon. Technol. Lett., 18, 1451(2006).

    [10] S. P. Li, K. T. Chan. Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser. Appl. Phys. Lett., 72, 1954(1998).

    [11] S. P. Li, K. T. Chan. A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings. IEEE Photon. Technol. Lett., 11, 179(1999).

    [12] B. Bakhshi, P. A. Andrekson. Dual-wavelength 10-GHz actively mode-locked erbium fiber laser. IEEE Photon. Technol. Lett., 11, 1387(1999).

    [13] G. E. Town, L. Chen, P. W. E. Smith. Dual wavelength modelocked fiber laser. IEEE Photon. Technol. Lett., 12, 1459(2000).

    [14] Z. H. Li, C. Y. Lou, Y. Gao, K. T. Chan. Dual-wavelength and dual-repetition-rate actively mode-locked fiber ring laser. Opt. Commun., 185, 381(2000).

    [15] Z. Chen, H. Z. Sun, S. Z. Ma, N. K. Dutta. Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber. IEEE Photon. Technol. Lett., 20, 2066(2008).

    [16] Z. R. Guo, Q. Hao, K. Huang, H. P. Zeng. All-normal-dispersion mode-locked fiber laser with a tunable angle-spliced polarization-maintaining fiber lyot filter. IEEE Photon. J., 13, 1501108(2021).

    [17] L. J. Li, Z. K. Wang, D. N. Wang, F. Yang. L-band tunable and dual-wavelength mode-locked fiber laser with NCF-GIMF-based SA. IEEE Photon. Technol. Lett., 31, 647(2019).

    [18] W. Xu, P. Guo, X. Li, Z. Hui, Y. Wang, Z. Shi, Y. Shu. Sheet-structured bismuthene for near-infrared dual-wavelength harmonic mode-locking. Nanotechnology, 31, 225209(2020).

    [19] P. Guo, X. Li, T. Feng, Y. Zhang, W. Xu. Few-layer bismuthene for coexistence of harmonic and dual wavelength in a mode-locked fiber laser. ACS Appl. Mater. Inter., 12, 31757(2020).

    [20] K. Y. Lau, M. H. Abu Bakar, F. D. Muhammad, A. A. Latif, M. F. Omar, Z. Yusoff, M. A. Mahdi. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber. Opt. Express, 26, 12790(2018).

    [21] X. X. Yan, M. Jiang, E. K. Li, X. Kang, Z. Y. Ren, D. D. Li, T. Q. Wang, B. L. Lu. Tunable high-order harmonic and dual-wavelength mode-locking in Er-doped fiber laser based on Ti3C2Tx-Mxene. Appl. Phys. Express, 14, 012009(2021).

    [22] B. Guo, Q. Y. Ouyang, S. Li, Z. J. Fang, P. F. Wang. Dual-wavelength soliton laser based on graphene ternary composite. Chin. J. Lasers, 44, 0703012(2017).

    [23] Q. Yu, K. Guo, J. Chen, T. Wang, J. Wang, X. Y. Shi, J. Wu, K. Zhang, P. Zhou. Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber. Acta Phys. Sin., 69, 184208(2020).

    [24] B. Guo, S. Li, Y. X. Fan, P. F. Wang. Versatile soliton emission from a WS2 mode-locked fiber laser. Opt. Commum., 406, 66(2018).

    [25] L. Yun. Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation. Opt. Express, 25, 32380(2017).

    [26] B. Guo, S. Li, K. Zhang, Y. X. Fan, Z. J. Fang, J. Ren, L. B. Yuan, P. F. Wang. Hexagonal boron nitride: a rising nonlinear optical material for dual-wavelength soliton generation(2017).

    [27] C. Zeng, Y. D. Cui, J. Guo. Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser. Opt. Commun., 347, 44(2015).

    [28] B. Guo, Y. Yao, Y. F. Yang, Y. J. Yuan, L. Jin, B. Yan, J. Y. Zhang. Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber. Photon. Res., 3, 94(2015).

    [29] M. Liu, N. Zhao, H. Liu, X. W. Zheng, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, H. Zhang, S. C. Wen. Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber. IEEE Photon. Technol. Lett., 26, 983(2014).

    [30] Y. C. Kong, H. R. Yang, W. L. Li, G. W. Chen. Switchable dual-wavelength all-fiber laser mode-locked by carbon nanotubes. Laser Phys., 25, 015101(2014).

    [31] X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, J. Zhu. Switchable, dual-wavelength passively modelocked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Express, 19, 1168(2011).

    [32] K. Y. Lau, P. J. Ker, A. F. Abas, M. T. Alresheedi, M. A. Mahdi. Mode-locked fiber laser in the C-band region for dual-wavelength ultrashort pulses emission using a carbon nanotube saturable absorber. Chin. Opt. Lett., 17, 051401(2019).

    [33] F. Y. Zhao, Y. S. Wang, Y. G. Wang, H. S. Wang, Y. J. Cai. Graphene oxide-COOH as a new saturable absorber for both Q-switching and mode-locking fiber lasers. Chin. Opt. Lett, 15, 101402(2018).

    [34] R. D. Lv, L. Li, Y. G. Wang, Z. D. Chen, S. C. Liu, X. Wang, J. Wang, Y. F. Li. Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser. Chin. Phys. B, 27, 114214(2018).

    [35] L. Hou, Q. M. Lin, Y. G. Wang, Z. D. Chen, J. Sun, H. Y. Guo, Y. Bai, H. W. Chen, B. L. Lu, J. T. Bai. Femtosecond ytterbium-doped fiber laser mode-locked by carboxyl-functionalized graphene oxide saturable absorber. Appl. Phys. Express, 11, 012702(2018).

    [36] T. J. Wang, J. Wang, Y. G. Wang, X. G. Yang, S. C. Liu, R. D. Lv, Z. D. Chen. High-power passively Q-switched Nd:GdVO4 reflective graphene oxide saturable absorber. Chin. Opt. Lett., 17, 020009(2019).

    [37] Z. T. Du, H. Wu, T. Q. Zhang, Z. D. Xie, Y. Y. Lv, X. J. Lv, J. L. Xu, G. Zhao, S. N. Zhu. Ultra-broadband enhanced nonlinear saturable absorption for Mo0.53W0.47Te2 nanosheets. Chin. Opt. Lett., 18, 021902(2020).

    [38] H. Zhang, D. Y. Tang, X. Wu, L. M. Zhao. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser. Opt. Express, 17, 12692(2009).

    [39] B. Guo, Y. Yao, P. G. Yan, K. Xu, J. J. Liu, S. G. Wang, Y. Li. Dual-wavelength soliton mode-locked fiber laser with a WS2-based fiber taper. IEEE Photon. Technol. Lett., 28, 323(2016).

    [40] D. Mao, H. Lu. Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime. J. Opt. Soc. Am. B, 29, 2819(2012).

    CLP Journals

    [1] Tingni Wu, Zhipeng Wu, Yuchun He, Zhuo Zhu, Lingxiao Wang, Kai Yin. Femtosecond laser textured porous nanowire structured glass for enhanced thermal imaging[J]. Chinese Optics Letters, 2022, 20(3): 033801

    Data from CrossRef

    [1] Ying‐Ying Li, Bo Gao, Jia‐Yu Huo, Ge Wu, Ying Han, Bing‐Kun Chen, Lie Liu. Dynamics of dissipative soliton and conventional soliton in passively mode‐locked erbium‐doped fiber laser. Microwave and Optical Technology Letters, mop.33232(2022).

    Qimeng Lin, Li Yan, Yuanqi Song, Xuzhuo Jia, Xiaoqiang Feng, Lei Hou, Jintao Bai. Switchable single- and dual-wavelength femtosecond mode-locked Er-doped fiber laser based on carboxyl-functionalized graphene oxide saturable absorber[J]. Chinese Optics Letters, 2021, 19(11): 111405
    Download Citation