• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 9, 3335 (2022)
JIN Hongdu*, HONG Qu, LIN Jun, LI Jun, LING Yujia, LI Menghe, CHEN Taiping, WEN Huimin, and HU Jun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    JIN Hongdu, HONG Qu, LIN Jun, LI Jun, LING Yujia, LI Menghe, CHEN Taiping, WEN Huimin, HU Jun. Electromagnetic Wave Absorption Performance of Yolk-Shell Structure NiCo/C Composites Derived from MOF[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3335 Copy Citation Text show less
    References

    [2] CHEN G, ZHANG L M, LUO B C, et al. Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2022, 607: 24-33.

    [3] CUI Y H, YANG K, WANG J Q, et al. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave[J]. Carbon, 2021, 172: 1-14.

    [4] HOU T Q, JIA Z R, FENG A L, et al. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity[J]. Journal of Materials Science & Technology, 2021, 68: 61-69.

    [5] LI J Y, DAI B S, QI Y J, et al. Enhanced electromagnetic wave absorption properties of carbon nanofibers embedded with ZnO nanocrystals[J]. Journal of Alloys and Compounds, 2021, 877: 160132.

    [6] ZHANG Y J, ZHANG Y L, LI Y P, et al. Facile design and permittivity control of reduced graphene oxide foam/TiO2 3D composite towards lightweight and high-efficient microwave absorption[J]. Journal of Alloys and Compounds, 2021, 889: 161695.

    [7] LI X H, SHU R W, WU Y, et al. Fabrication of Ni/ZnO/C hollow microspheres decorated graphene composites towards high-efficiency electromagnetic wave absorption in the Ku-band[J]. Ceramics International, 2021, 47(17): 24372-24383.

    [8] SHU R W, LI N N, LI X H, et al. Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness[J]. Journal of Colloid and Interface Science, 2022, 606: 1918-1927.

    [9] WANG L, WEN B, YANG H B, et al. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105958.

    [10] ZHAO Y Z, WANG W, WANG Q J, et al. Construction of excellent electromagnetic wave absorber from multi-heterostructure materials derived from ZnCo2O4 and ZIF-67 composite[J]. Carbon, 2021, 185: 514-525.

    [11] YAN J, HUANG Y, YAN Y H, et al. High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40781-40792.

    [12] XIANG Z, SONG Y M, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2019, 142: 20-31.

    [13] WU N N, XU D M, WANG Z, et al. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods[J]. Carbon, 2019, 145: 433-444.

    [14] XU X Q, RAN F T, LAI H, et al. In situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35999-36009.

    [15] XU J, ZHANG X, ZHAO Z B, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties[J]. Small, 2021, 17(33): 2102032.

    [16] WANG Y Y, SUN W J, DAI K, et al. Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption[J]. Composites Science and Technology, 2021, 212: 108848.

    [17] HUANG Y, XIE A M, SEIDI F, et al. Core-shell heterostructured nanofibers consisting of Fe7S8 nanoparticles embedded into S-doped carbon nanoshells for superior electromagnetic wave absorption[J]. Chemical Engineering Journal, 2021, 423: 130307.

    [18] LIANG L L, GU W H, WU Y, et al. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities[J]. Advanced Materials, 2022, 34(4): 2106195.

    [20] ZHAO Z H, KOU K C, ZHANG L M, et al. Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption[J]. Carbon, 2022, 186: 323-332.

    [21] WEN H M, JIN H D, PAN J N, et al. Hollow FeNi/NiFe2O4-codoped carbon composite nanorods for electromagnetic wave absorption[J]. ACS Applied Nano Materials, 2022, 5: 3406-3414.

    [22] ZHOU Y, WANG S J, LI D S, et al. Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption[J]. Composites Part B: Engineering, 2021, 213: 108701.

    [23] ZHOU X F, JIA Z R, FENG A L, et al. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber[J]. Composites Part B: Engineering, 2020, 192: 107980.

    [24] WANG K J, YE Z W, LI X Q, et al. Nanoporous resorcinol-formaldehyde based carbon aerogel for lightweight and tunable microwave absorption[J]. Materials Chemistry and Physics, 2022, 278: 125718.

    [25] DONG Y Y, ZHU X J, PAN F, et al. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption[J]. Carbon, 2022, 190: 68-79.

    [26] WU Z C, JIN C, YANG Z Q, et al. Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance[J]. Carbon, 2022, 189: 530-538.

    JIN Hongdu, HONG Qu, LIN Jun, LI Jun, LING Yujia, LI Menghe, CHEN Taiping, WEN Huimin, HU Jun. Electromagnetic Wave Absorption Performance of Yolk-Shell Structure NiCo/C Composites Derived from MOF[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3335
    Download Citation