[3] FLYNN A M. Gnat robots and how they will change robotics[C]//Hyannis MA: IEEE Micro Robots and Teleoperators Workshop, 1987.
[4] DE CROON G, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly[J]. International Journal of Micro Air Vehicles, 2009, 1(2): 71-97.
[5] DE WAGTER C, TIJMONS S, REMES B D W, et al. Autonomous flight of a 20-gram flapping wing MAV with a 4-gram onboard stereo vision system[C]//HongKong: 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014: 4982-4987.
[6] KARSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089-1094.
[7] HINES L, CAMPOLO D, SITTI M. Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance[J]. IEEE Transactions on Robotics, 2013, 30(1): 220-232.
[8] ROLL J A, CHENG B, DENG X. An electromagnetic actuator for high-frequency flapping-wing microair vehicles[J]. IEEE Transactions on Robotics, 2015, 31(2): 400-414.
[9] ZOU Y, ZHANG W, ZHANG Z. Liftoff of an electromagnetically driven insect-inspired flapping-wing robot[J]. IEEE Transactions on Robotics, 2016, 32(5): 1285-1289.