• Chinese Journal of Lasers
  • Vol. 51, Issue 3, 0307204 (2024)
Yang Ge1, Hanyang Li2、*, Hongtao Wang3, Ying Chen1, Xulong Yang2, and Gaoqian Zhou2
Author Affiliations
  • 1College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang , China
  • 2College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang , China
  • 3Avic Harbin Aircraft Industry Group Co., Ltd., Harbin 150066, Heilongjiang , China
  • show less
    DOI: 10.3788/CJL231086 Cite this Article Set citation alerts
    Yang Ge, Hanyang Li, Hongtao Wang, Ying Chen, Xulong Yang, Gaoqian Zhou. Numerical Simulation of Thrombus Propulsion Mechanism Induced by Laser Plasma Detonation Wave[J]. Chinese Journal of Lasers, 2024, 51(3): 0307204 Copy Citation Text show less
    Rayleigh line and Hugoniot curve
    Fig. 1. Rayleigh line and Hugoniot curve
    One dimensional model of laser plasma detonation wave
    Fig. 2. One dimensional model of laser plasma detonation wave
    Schematic diagram of laser plasma detonation wave formation under shock wave mechanism
    Fig. 3. Schematic diagram of laser plasma detonation wave formation under shock wave mechanism
    Diagram of human blood vessels
    Fig. 4. Diagram of human blood vessels
    Distribution of detonation wave pressure flow field at different time. (a) 5 ns; (b) 10 ns; (c) 20 ns
    Fig. 5. Distribution of detonation wave pressure flow field at different time. (a) 5 ns; (b) 10 ns; (c) 20 ns
    Pressure curves at different locations in the direction of detonation wave propagation
    Fig. 6. Pressure curves at different locations in the direction of detonation wave propagation
    Diagram of fiber laser detonation wave promoting thrombus in blood vessel
    Fig. 7. Diagram of fiber laser detonation wave promoting thrombus in blood vessel
    Simplified model of arterial vessel containing thrombus
    Fig. 8. Simplified model of arterial vessel containing thrombus
    Cloud images of thrombus pressure flow field promoted by fiber laser at different time. (a) Artery, 0.01 μs; (b) artery, 0.05 μs; (c) artery, 0.5 μs; (d) vein, 0.01 μs; (e) vein, 0.05 μs; (f) vein, 0.5 μs
    Fig. 9. Cloud images of thrombus pressure flow field promoted by fiber laser at different time. (a) Artery, 0.01 μs; (b) artery, 0.05 μs; (c) artery, 0.5 μs; (d) vein, 0.01 μs; (e) vein, 0.05 μs; (f) vein, 0.5 μs
    Thrust analysis of arterial and venous thrombi in vessels
    Fig. 10. Thrust analysis of arterial and venous thrombi in vessels
    Thrust curves under different laser energies
    Fig. 11. Thrust curves under different laser energies
    Force curves of different propulsion targets
    Fig. 12. Force curves of different propulsion targets
    Experimental schematic diagram. (a) System diagram; (b) physical drawing
    Fig. 13. Experimental schematic diagram. (a) System diagram; (b) physical drawing
    The movement of microsphere at different time with laser energy of 25 μJ. (a) 0 ms; (b) 0.25 ms; (c) 3.25 ms; (d) 4 ms
    Fig. 14. The movement of microsphere at different time with laser energy of 25 μJ. (a) 0 ms; (b) 0.25 ms; (c) 3.25 ms; (d) 4 ms
    Experiments of underwater microsphere clusters driven by conical optical fiber. (a) Microsphere particle cluster; (b) breaking up microsphere cluster; (c) removal effect
    Fig. 15. Experiments of underwater microsphere clusters driven by conical optical fiber. (a) Microsphere particle cluster; (b) breaking up microsphere cluster; (c) removal effect
    Physical propertyValue
    Density /(kg·m-31050‒1060
    Specific heat /(J·kg-1·K-13770
    Thermal conductivity /(W·m-1·K-10.52
    Temperature /℃38±0.3
    pH7.35‒7.45
    ViscosityNon-Newtonian fluid
    Relative viscosity4‒5
    Blood diastolic pressure /mmHg90‒139
    Blood systolic pressure /mmHg60‒89
    Table 1. Physical parameters of the blood
    Non-Newtonian parameterValue
    Consistency index0.644
    Power-law index0.392
    Minimum viscosity limit0.0022
    Maximum viscosity limit0.022
    Table 2. Non-Newtonian fluid parameters of the blood
    Blood environment

    Density /

    (kg·m-3

    Specific heat /

    (J·kg-1·K-1

    Thermal conductivity /

    (W·m-1·K-1

    Pressure /

    kPa

    Vascular diameter /mm

    Velocity of flow /

    (cm·s-1

    Viscosity
    Arteriae lower extremis105037700.5218.7530Non-Newtonian fluid
    Venae lower extremis105037700.52101010Non-Newtonian fluid
    Table 3. Physical parameters of the two blood environments
    Yang Ge, Hanyang Li, Hongtao Wang, Ying Chen, Xulong Yang, Gaoqian Zhou. Numerical Simulation of Thrombus Propulsion Mechanism Induced by Laser Plasma Detonation Wave[J]. Chinese Journal of Lasers, 2024, 51(3): 0307204
    Download Citation