[1] T ZHOU, F Z LIU, H L LU et al. A review of deep learning imaging diagnostic methods for COVID-19. Electronics, 12, 1167(2023).
[2] C A TORRES-RAMIREZ, D TIMARAN-MONTENEGRO, Y S MATEO-CAMACHO et al. CT-based pathological lung opacities volume as a predictor of critical illness and inflammatory response severity in patients with COVID-19. Heliyon, 8(2022).
[3] K REN, Y GU, M S LUO et al. Deep-learning-based denoising of X-ray differential phase and dark-field images. European Journal of Radiology, 163, 110835(2023).
[4] M MAMALAKIS, A J SWIFT, B VORSELAARS et al. DenResCov-19: a deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays. Computerized Medical Imaging and Graphics, 94, 102008(2021).
[5] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 27, 770-778(2016).
[6] T ZHOU, X Y CHANG, Y C LIU et al. COVID-ResNet: COVID-19 recognition based on improved attention ResNet. Electronics, 12, 1413(2023).
[7] Y F CHEN, Y L LIN, X D XU et al. Classification of lungs infected COVID-19 images based on inception-ResNet. Computer Methods and Programs in Biomedicine, 225, 107053(2022).
[8] Q H HUANG, Y LEI, W Y XING et al. Evaluation of pulmonary edema using ultrasound imaging in patients with COVID-19 pneumonia based on a non-local channel attention ResNet. Ultrasound in Medicine & Biology, 48, 945-953(2022).
[9] T AHILA, A C SUBHAJINI. E-GCS: detection of COVID-19 through classification by attention bottleneck residual network. Engineering Applications of Artificial Intelligence, 116, 105398(2022).
[10] B Z CHEN, J X LI, X B GUO et al. DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays. Biomedical Signal Processing and Control, 53, 101554(2019).
[11] 吴宣言, 缑新科, 朱子重, 等. 深层聚合残差密集网络的超声图像左心室分割[J]. 中国图象图形学报, 2020, 25(9): 1930-1942. doi: 10.11834/jig.190552WUX Y, GOUX K, ZHUZ ZH, et al. Left ventricular segmentation on ultrasound images using deep layer aggregation for residual dense networks[J]. Journal of Image and Graphics, 2020, 25(9): 1930-1942.(in Chinese). doi: 10.11834/jig.190552
[12] 李锵, 王旭, 关欣. 一种结合三重注意力机制的双路径网络胸片疾病分类方法[J]. 电子与信息学报, 2023, 45(4): 1412-1425. doi: 10.11999/JEIT220172LIQ, WANGX, GUANX. A dual-path network chest film disease classification method combined with a triple attention mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1412-1425.(in Chinese). doi: 10.11999/JEIT220172
[13] 周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用:研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149-167. doi: 10.11999/JEIT210914ZHOUT, LIUY C, LUH L, et al. ResNet and its application to medical image processing: research progress and challenges[J]. Journal of Electronics & Information Technology, 2022, 44(1): 149-167.(in Chinese). doi: 10.11999/JEIT210914
[14] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 18, 7132-7141(2018).
[15] 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.FANL L, ZHAOH W, ZHAOH Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and Precision Engineering, 2020, 28(5): 1152-1164.(in Chinese)
[16] M E H CHOWDHURY, T RAHMAN, A KHANDAKAR et al. Can AI help in screening viral and COVID-19 pneumonia?. IEEE Access, 8, 132665-132676(2020).
[17] T RAHMAN, A KHANDAKAR, Y QIBLAWEY et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132, 104319(2021).
[18] S H GAO, M M CHENG, K ZHAO et al. Res2Net: a new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[19] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely connected convolutional networks, 21, 2261-2269(2017).
[20] S N XIE, R GIRSHICK, P DOLLAR et al. Aggregated residual transformations for deep neural networks, 21, 1492-1500(2017).
[21] M SANDLER, A HOWARD, M L ZHU et al. MobileNetV2: inverted residuals and linear bottlenecks, 18, 4510-4520(2018).
[22] Y P CHEN, J N LI, H X XIAO et al. Dual path networks, 4470-4478(2017).
[23] Z LIU, Y T LIN, Y CAO et al. Swin Transformer: hierarchical Vision Transformer using Shifted Windows, 10, 10012-10022(2021).
[24] N ALAM, S KOLAWOLE, S SETHI et al. Vision transformers for mobile applications: a short survey. arXiv preprint, 19365(2023).
[25] H ZHANG, C R WU, Z Y ZHANG et al. ResNeSt: split-attention networks, 19, 2736-2746(2022).
[26] Z LIU, H MAO, C WU et al. A ConvNet for the 2020s. arXiv preprint(2022).