• Acta Photonica Sinica
  • Vol. 46, Issue 12, 1201001 (2017)
LIU Xian-yun1、2、*, XIA Li1, WANG Zhen-ya2, and ZHANG Wei-jun2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20174612.1201001 Cite this Article
    LIU Xian-yun, XIA Li, WANG Zhen-ya, ZHANG Wei-jun. Effects of Environmental Factors on Secondary Organic Aerosol Formed from Isoprene Atmospheric Photo-oxidation Reactions[J]. Acta Photonica Sinica, 2017, 46(12): 1201001 Copy Citation Text show less
    References

    [1] CHUNG S H, SEINFELD J H. Global distribution and climate forcing of carbonaceous aerosols[J]. Journal of Geophysical Research, 2002, 107(D19): 4407.

    [2] SEINFELD J H, KLEINDIENST T E, EDNEY E O, et al. Aerosol growth in a steady-state, continuous flow chamber: Application to studies of secondary aerosol formation[J]. Aerosol Science and Technology, 2003, 37(9): 728-734.

    [3] SHILLING J E, CHEN Q, KING S M, et al. Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene[J]. Atmospheric Chemistry and Physics, 2008, 8(7): 17927-17965.

    [4] NAH T, MCVAY R C, ZHANG X, et al. Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α-pinene ozonolysis[J]. Atmospheric Chemistry and Physics, 2016, 16(14): 9361-9379.

    [5] ROMIEU I, GOUVEIA N, CIFUENTES L A, et al. Multicity study of air pollution and mortality in Latin America (the ESCALA study)[J]. Research Report (Health Effects Institute). 2012, 24(171): 5-86.

    [6] MILLER K A, SISCOVICK D S, SHEPPARD L, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women[J]. The New England Journal of Medicine, 356(5): 447(2007).

    [7] TSIGARIDIS K, KANAKIDOU M. Global modeling of secondary organic aerosol in the troposphere: a sensitivity analysis[J]. Atmospheric Chemistry and Physics, 2003, 3(5): 2879 -2929.

    [8] SQUIRE O J, ARCHIBALD A, ABRAHAM N L, et al. Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone[J]. Atmospheric Chemistry and Physics, 2014, 14(2): 1011-1024.

    [9] HENZE D K, SEINFELD J H, NG N L, et al. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high vs. low yield pathways[J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2405-2420.

    [10] PAULOT F, WENNBERG P O. Unexpected epoxide formation in the gas-phase photooxidation of isoprene[J]. Science, 2009, 325(5941): 730-733.

    [11] THOMAS D S, AMY E W, AUTUMN R D. Isoprene emission from plants: why and how [J]. Annals of Botany, 2008, 101(1): 5-18.

    [12] BRéGONZIO-ROZIER L, DOUSSIN J F, PANGUI E, et al. Secondary organic aerosols formation from isoprene photooxidation[J]. European Aerosol Conference, 2012, 16(24): 1869-77.

    [13] SURRATT J D, MURPHY S M, KROLL J H, et al. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene[J]. Journal of Physical Chemistry A, 2006, 110(31): 9665-9690.

    [14] WONG J P S, LEE A K Y, ABBATT J P D. Impacts of sulfate seed acidity and water content on isoprene secondary organic aerosol formation[J]. Environmental Science and Technology, 2015, 49(22): 13215-13221.

    [15] KROLL J H, NG N L, MURPHY S M, et al. Secondary organic aerosol formation from isoprene photooxidation[J]. Environmental Science and Technology, 2006, 40(6): 1869-1877.

    [16] KWOK E S, ATKINSON R, AREY J. Observation of hydroxycarbonyls from the OH radical-initiated reaction of isoprene[J]. Environmental Science and Technology, 1995, 29(9): 2467 -2469.

    [17] WANG S, WU D, WANG X M, et al. Relative contributions of secondary organic aerosol formation from toluene, xylenes, isoprene, and monoterpenes in Hong Kong and Guangzhou in the Pearl River Delta, China: an emission-based box modeling study[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 507-519.

    [18] SZMIGIELSKI R, SURRATT J D, VERMEYLEN R, et al. Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formed from the photooxidation of isoprene using gas chromatography/ion trap mass spectrometry[J]. Journal of Mass Spectrometry, 2007, 42(1): 101-116.

    [19] RUPPERT L, BECKER K H. A product study of the OH radical-initiated oxidation of isoprene: formation of C5-unsaturated diols[J]. Atmospheric Environment, 2007, 34(10): 1529-1542.

    [20] JANG M, CZOSCHKE N M, LEE S, KAMENS R M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reaction[J]. Science, 2002, 298(5594): 814-817.

    [21] LIU X, ZHANG W, HUANG M, et al. Effect of illumination intensity and light application time on secondary organic aerosol (SOA) formation from the photooxidation of α-pinene[J]. Journal of Environmental Sciences, 2009, 21(4): 447-451.

    [22] ATKINSON R, CARTER W P L, WINER A M, et al. An experimental protocol for the determination of OH radical rate constants with organics using methyl nitrite photolysis as an OH· radical source[J]. Air Pollution Control Association, 1981, 31(10): 1090-1092.

    [23] SCHWARTZ J, DOCKERY D W, NEAS L M J. Is daily mortality associated specifically with fine particles [J]. Journal of Air and Waste Management Association, 1996, 46(10): 927-939 (1996).

    [24] HAO L, WANG Z, HUANG M, et al. Size distribution of the secondary organic aerosol particles from the photooxidation of toluene[J]. Journal of Environmental Sciences, 2005, 17(6): 912-916.

    LIU Xian-yun, XIA Li, WANG Zhen-ya, ZHANG Wei-jun. Effects of Environmental Factors on Secondary Organic Aerosol Formed from Isoprene Atmospheric Photo-oxidation Reactions[J]. Acta Photonica Sinica, 2017, 46(12): 1201001
    Download Citation