• Acta Photonica Sinica
  • Vol. 50, Issue 10, 1026002 (2021)
Shenyan GUO, Zhiwei CUI*, Ju WANG, and Fuping WU
Author Affiliations
  • School of Physics and Optoelectronic Engineering,Xidian University,Xi'an 710071,China
  • show less
    DOI: 10.3788/gzxb20215010.1026002 Cite this Article
    Shenyan GUO, Zhiwei CUI, Ju WANG, Fuping WU. Local Optical Chirality-analysis of Tightly Focused Vortex Beams[J]. Acta Photonica Sinica, 2021, 50(10): 1026002 Copy Citation Text show less
    References

    [1] J B PENDRY. A chiral route to negative refraction. Science, 306, 1353-1355(2004).

    [2] CHENC , L GAO, W R GAO et al. Circularly polarized light detection using chiral hybrid perovskite. Nature Communication, 10, 1927(2019).

    [3] J SHENY, X J WANG, Z W XIE et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light-Science & Applications, 8, 90(2019).

    [4] L ANDREWSD, L C D ROMERO, M BABIKER. On optical vortex interactions with chiral matter. Optics Communication, 237, 133-139(2004).

    [5] K A FORBES, D L ANDREWS. Optical orbital angular momentum: twisted light and chirality. Optics Letters, 43, 435-438(2018).

    [6] K A FORBES, D L ANDREWS. Enhanced optical activity using the orbital angular momentum of structured light. Physical Review Research, 1, 033080(2019).

    [7] A FORBESK, D L ANDREWS. Orbital angular momentum of twisted light: chirality and optical activity. Journal of Physics: Photonics, 3, 022007(2021).

    [8] T KAKKAR, C KEIJZER, M RODIER et al. Superchiral near fields detect virus structure. Light-Science & Applications, 9, 195(2020).

    [9] T J DAVIS, E HENDRY. Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures. Physical Review B, 87, 085405(2013).

    [10] A VAZQUEZ-GUARDADO, D CHANDA. Superchiral light generation on degenerate achiral surfaces. Physical Review Letters, 120, 137601(2018).

    [11] E HENDRY, R V MIKHAYLOVSKIY, LD BARRON et al. Chiral electromagnetic fields generated by arrays of nanoslits. Nano Letters, 12, 3640-3644(2012).

    [12] D AYUSO, O NEUFELD, A F ORDONEZ et al. Synthetic chiral light for efficient control of chiral light-matter interaction. Nature Photonics, 13, 866-871(2019).

    [13] Z H ZHOU, Y K GUO, L Q ZHU. Tight focusing of axially symmetric polarized vortex beams. Chinese Physics B, 23, 044201(2014).

    [14] C A P JANET, M LAVANYA, K B RAJESH et al. Tight focusing properties of azimuthally polarized pair of vortex beams through a dielectric interface. Chinese Physics Letters, 34, 074209(2017).

    [15] Z W CUI, J B SUN, N M LITCHINITSER et al. Dynamical characteristics of tightly focused vortex beams with different states of polarization. Journal of Optics, 21, 015401(2019).

    [16] H F HU, Q Q GAN, Q W ZHAN. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects. Physical Review Letters, 122, 223901(2019).

    [17] H X MA, Y Q ZHANG, C J MIN et al. Controllable propagation and transformation of chiral intensity field at focus. Optics Letters, 45, 4823-4826(2020).

    [18] M M LI, S H YAN, Y N ZHANG et al. Generation of controllable chiral optical fields by vector beams. Nanoscale, 12, 15453-15459(2020).

    [19] B RICHARDS, E WOLF. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society A, 253, 358-379(1959).

    [20] J MUN, M KIM, Y YANG et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light-Science & Applications, 9, 139(2020).

    Shenyan GUO, Zhiwei CUI, Ju WANG, Fuping WU. Local Optical Chirality-analysis of Tightly Focused Vortex Beams[J]. Acta Photonica Sinica, 2021, 50(10): 1026002
    Download Citation