[1] SHEN Y R. The principles of nonlinear optics[M]. New York: J Wiley, 1984.
[2] BOYD R W. Nonlinear optics[M]. 2nd ed. San Diego, CA: Academic Press, 2003.
[3] CHEN C T, SASAKI T, LI R K, et al. Nonlinear optical borate crystals[M]. Germany: Wiley, 2012.
[4] WU K, YANG Y, GAO L H. A review on phase transition and structure-performance relationship of second-order nonlinear optical polymorphs[J]. Coordination Chemistry Reviews, 2020, 418: 213380.
[5] YAN M, XUE H G, GUO S P. Recent achievements in lone-pair cation-based infrared second-order nonlinear optical materials[J]. Crystal Growth & Design, 2021, 21(1): 698-720.
[6] CHEN H, WEI W B, LIN H, et al. Transition-metal-based chalcogenides: a rich source of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2021, 448: 214154.
[7] CHEN J, HU C L, KONG F, et al. High-performance second-harmonic-generation (SHG) materials: new developments and new strategies[J]. Accounts of Chemical Research, 2021, 54(12): 2775-2783.
[8] MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202.
[9] ZHAO J, MEI D J, WANG W K, et al. Recent advances in nonlinear optical rare earth structures[J]. Journal of Rare Earths, 2021, 39(12): 1455-1466.
[10] CHEN H, RAN M Y, WEI W B, et al. A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications[J]. Coordination Chemistry Reviews, 2022, 470: 214706.
[11] LI C X, MENG X H, LI Z A, et al. Hg-based chalcogenides: an intriguing class of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2022, 453: 214328.
[12] LUO X Y, LI Z, GUO Y W, et al. Recent progress on new infrared nonlinear optical materials with application prospect[J]. Journal of Solid State Chemistry, 2019, 270: 674-687.
[13] CAI W B, ABUDURUSULI A, XIE C W, et al. Toward the rational design of mid-infrared nonlinear optical materials with targeted properties via a multi-level data-driven approach[J]. Advanced Functional Materials, 2022, 32(23): 2200231.
[14] WU M F, TIKHONOV E, TUDI A, et al. Target-driven design of deep-UV nonlinear optical materials via interpretable machine learning[J]. Advanced Materials, 2023, 35(23): e2300848.
[15] BIAN Q, YANG Z H, WANG Y, et al. Predicting global minimum in complex beryllium borate system for deep-ultraviolet functional optical applications[J]. Scientific Reports, 2016, 6: 34839.
[16] BIAN Q A, YANG Z H, WANG Y C, et al. Computer-assisted design of a superior Be2BO3F deep-ultraviolet nonlinear-optical material[J]. Inorganic Chemistry, 2018, 57(10): 5716-5719.
[17] ZHANG B B, TIKHONOV E, XIE C W, et al. Prediction of fluorooxoborates with colossal second harmonic generation (SHG) coefficients and extremely wide band gaps: towards modulating properties by tuning the BO3/BO3F ratio in layers[J]. Angewandte Chemie International Edition, 2019, 58(34): 11726-11730.
[18] HOU D W, NISSIMAGOUDAR A S, BIAN Q A, et al. Prediction and characterization of NaGaS2, a high thermal conductivity mid-infrared nonlinear optical material for high-power laser frequency conversion[J]. Inorganic Chemistry, 2019, 58(1): 93-98.
[19] WANG R, LIANG F, LIN Z S. Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances[J]. Scientific Reports, 2020, 10: 3486.
[20] KANG L, ZHOU M L, YAO J Y, et al. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis[J]. Journal of the American Chemical Society, 2015, 137(40): 13049-13059.
[21] ZHANG Z Y, LIU X, SHEN L, et al. Machine learning with multilevel descriptors for screening of inorganic nonlinear optical crystals[J]. The Journal of Physical Chemistry C, 2021, 125(45): 25175-25188.
[22] FAN Z, SUN Z X, WANG A, et al. Machine learning regression model for predicting the formation energy of nonlinear optical crystals[J]. Advanced Theory and Simulations, 2023, 6(3): 2200883.
[23] CURTAROLO S, HART G L W, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12(3): 191-201.
[24] DE PABLO J J, JACKSON N E, WEBB M A, et al. New frontiers for the materials genome initiative[J]. NPJ Computational Materials, 2019, 5: 41.
[27] JIANG X M, DENG S Q, WHANGBO M H, et al. Material research from the viewpoint of functional motifs[J]. National Science Review, 2022, 9(7): nwac017.
[28] AVERSA C, SIPE J E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis[J]. Physical Review B, 1995, 52(20): 14636-14645.
[29] RASHKEEV S N, LAMBRECHT W R L, SEGALL B. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors[J]. Physical Review B, 1998, 57(7): 3905-3919.
[30] SHARMA S, AMBROSCH-DRAXL C. Second-harmonic optical response from first principles[J]. Physica Scripta, 2004, T109: 128.
[31] CHEN C T, WU Y C, LI R K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series[J]. International Reviews in Physical Chemistry, 1989, 8(1): 65-91.
[32] VEITHEN M, GONZE X, GHOSEZ P. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory[J]. Physical Review B, 2005, 71(12): 125107.
[33] LI Z, LIU Q, HAN S J, et al. Nonlinear electronic polarization and optical response in borophosphate BPO4[J]. Physical Review B, 2016, 93(24): 245125.
[34] LI Z, LIU Q, WANG Y, et al. Second-harmonic generation in noncentrosymmetric phosphates[J]. Physical Review B, 2017, 96(3): 035205.
[35] LI J, DUAN C G, GU Z Q, et al. First-principles calculations of the electronic structure and optical properties of LiB3O5, CsB3O5, and BaB2O4 crystals[J]. Physical Review B, 1998, 57(12): 6925.
[36] DUAN C G, LI J, GU Z Q, et al. Interpretation of the nonlinear optical susceptibility of borate crystals from first principles[J]. Physical Review B, 1999, 59(1): 369-372.
[37] DUAN C G, LI J, GU Z Q, et al. First-principles calculation of the second-harmonic-generation coefficients of borate crystals[J]. Physical Review B, 1999, 60(13): 9435-9443.
[38] LIN J A, LEE M H, LIU Z P, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals[J]. Physical Review B, 1999, 60(19): 13380-13389.
[39] TRAN T T, HE J G, RONDINELLI J M, et al. RbMgCO3F: a new beryllium-free deep-ultraviolet nonlinear optical material[J]. Journal of the American Chemical Society, 2015, 137(33): 10504-10507.
[40] WU H P, YU H W, YANG Z H, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response[J]. Journal of the American Chemical Society, 2013, 135(11): 4215-4218.
[41] LI Z H, ZHANG A M, LUO H G. The microscopic origin of second harmonic generation response: the spatial structure of instantaneous dipole moments in electron excitation[J]. Angewandte Chemie International Edition, 2022, 61(44): e202212125.
[42] LI Z H, DENG S Q, WHANGBO M H, et al. Orbital projection technique to explore the materials genomes of optical susceptibilities[J]. AIP Advances, 2022, 12(5): 055206.
[43] CHENG X Y, WHANGBO M H, GUO G C, et al. The large second-harmonic generation of LiCs2PO4 is caused by the metal-cation-centered groups[J]. Angewandte Chemie International Edition, 2018, 57(15): 3933-3937.
[44] CHENG X Y, LI Z H, WU X T, et al. Key factors controlling the large second harmonic generation in nonlinear optical materials[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9434-9439.
[45] CHENG X Y, ZHANG Y P, LIU L J, et al. Structure and origin of the second-harmonic generation response of nonlinear optical material Sr2Be2B2O7[J]. The Journal of Physical Chemistry Letters, 2021, 12(46): 11399-11405.
[46] ALMOUSSAWI B, YAO W D, GUO S P, et al. Negative second harmonic response of Sn4+ in the fresnoite oxysulfide Ba2SnSSi2O7[J]. Chemistry of Materials, 2022, 34(10): 4375-4383.
[47] JIA M H, CHENG X Y, WHANGBO M H, et al. Second harmonic generation responses of KH2PO4: importance of K and breaking down of Kleinman symmetry[J]. RSC Advances, 2020, 10(44): 26479-26485.
[48] CAI Z W, CHENG X Y, WHANGBO M H, et al. The partition principles for atomic-scale structures and their physical properties: application to the nonlinear optical crystal material KBe2BO3F2[J]. Physical Chemistry Chemical Physics, 2020, 22(34): 19299-19306.
[49] CHENG X Y, WHANGBO M H, HONG M C, et al. Dependence of the second-harmonic generation response on the cell volume to band-gap ratio[J]. Inorganic Chemistry, 2019, 58(15): 9572-9575.
[50] GUO S P, CHENG X Y, SUN Z D, et al. Large second harmonic generation (SHG) effect and high laser-induced damage threshold (LIDT) observed coexisting in gallium selenide[J]. Angewandte Chemie International Edition, 2019, 58(24): 8087-8091.
[51] YE R P, CHENG X Y, LIU B W, et al. Strong nonlinear optical effect attained by atom-response-theory aided design in the Na2MIIMIV2Q6 (MII=Zn, Cd; MIV=Ge, Sn; Q=S, Se) chalcogenide system[J]. Journal of Materials Chemistry C, 2020, 8: 1244-1247.
[52] YAO W D, CHENG X Y, GUO S P, et al. Phase competition and strong SHG responses of the Li2MIIMIVSe4 family: atom response theory predictions versus experimental results[J]. Chemistry of Materials, 2023, 35(3): 1159-1167.
[55] ECONOMOU E N. Green’s functions in quantum physics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979.
[56] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen Der Physik, 1927, 389(20): 457-484.
[57] SUTTON A P, FINNIS M W, PETTIFOR D G, et al. The tight-binding bond model[J]. Journal of Physics C: Solid State Physics, 1988, 21(1): 35-66.
[58] DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations[J]. The Journal of Physical Chemistry, 1993, 97(33): 8617-8624.
[59] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.
[60] SHEN Y G, YANG Y, ZHAO S G, et al. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation[J]. Chemistry of Materials, 2016, 28(19): 7110–7116.
[61] LI L, WANG Y, LEI B H, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response[J]. Journal of the American Chemical Society, 2016, 138(29): 9101-9104.
[62] JIANG X X, ZHAO S G, LIN Z S, et al. The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals[J]. Journal of Materials Chemistry C, 2014, 2(3): 530-537.
[63] KLEINMAN D A. Nonlinear dielectric polarization in optical media[J]. Physical Review, 1962, 126(6): 1977-1979.
[64] CHEN C T, WANG Y B, WU B C, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7[J]. Nature, 1995, 373(6512): 322-324.
[65] KESZLER D. Borates for optical frequency conversion[J]. Current Opinion in Solid State & Materials Science, 1996, 1: 204-211.
[66] HE M, KIENLE L, SIMON A, et al. Re-examination of the crystal structure of Na2Al2B2O7: stacking faults and twinning[J]. Journal of Solid State Chemistry, 2004, 177(9): 3212-3218.
[67] MENG X Y, WEN X H, LIU G L. Structure and stacking faults in Sr2Be2B2O7 crystal[J]. Journal of the Korean Physical Society, 2008, 52(9(4)): 1277-1280.
[68] ZHAO S G, KANG L, SHEN Y G, et al. Designing a beryllium-free deep-ultraviolet nonlinear optical material without a structural instability problem[J]. Journal of the American Chemical Society, 2016, 138(9): 2961-2964.
[70] LIU B W, JIANG X M, WANG G E, et al. Oxychalcogenide BaGeOSe2: highly distorted mixed-anion building units leading to a large second-harmonic generation response[J]. Chemistry of Materials, 2015, 27(24): 8189-8192.
[71] SALTER E J T, BLANDY J N, CLARKE S J. Crystal and magnetic structures of the oxide sulfides CaCoSO and BaCoSO[J]. Inorganic Chemistry, 2016, 55(4): 1697-1701.
[72] WANG R Q, LIANG F, WANG F K, et al. Sr6Cd2Sb6O7S10: strong SHG response activated by highly polarizable Sb/O/S groups[J]. Angewandte Chemie, 2019, 58(24): 8078-8081.
[73] KAGEYAMA H, HAYASHI K, MAEDA K, et al. Expanding frontiers in materials chemistry and physics with multiple anions[J]. Nature Communications, 2018, 9: 772.
[74] CLARK D J, ZHANG J H, CRAIG A J, et al. The Kurtz-Perry powder technique revisited: a case study on the importance of reference quality and broadband nonlinear optical measurements using LiInSe2[J]. Journal of Alloys and Compounds, 2022, 917: 165381.
[75] YANG T T, HUANG X L, CHENG X Y, et al. Prediction of large second harmonic generation in the metal-oxide/organic hybrid compound CuMoO3(p2c)[J]. Symmetry, 2022, 14(4): 824.
[76] ABUDURUSULI A, LI J J, PAN S L. A review on the recently developed promising infrared nonlinear optical materials[J]. Dalton Transactions, 2021, 50(9): 3155-3160.
[77] GAO L H, XU J W, TIAN X Y, et al. AgGaSe2-inspired nonlinear optical materials: tetrel selenides of alkali metals and mercury[J]. Chemistry of Materials, 2022, 34(13): 5991-5998.