• Journal of Synthetic Crystals
  • Vol. 52, Issue 7, 1270 (2023)
CHENG Xiyue1,2,*, MI Hanxiang1, HONG Maochun1,2, and DENG Shuiquan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    CHENG Xiyue, MI Hanxiang, HONG Maochun, DENG Shuiquan. New Insights and Applications from Atom Response Theory of Nonlinear Optical Materials[J]. Journal of Synthetic Crystals, 2023, 52(7): 1270 Copy Citation Text show less
    References

    [1] SHEN Y R. The principles of nonlinear optics[M]. New York: J Wiley, 1984.

    [2] BOYD R W. Nonlinear optics[M]. 2nd ed. San Diego, CA: Academic Press, 2003.

    [3] CHEN C T, SASAKI T, LI R K, et al. Nonlinear optical borate crystals[M]. Germany: Wiley, 2012.

    [4] WU K, YANG Y, GAO L H. A review on phase transition and structure-performance relationship of second-order nonlinear optical polymorphs[J]. Coordination Chemistry Reviews, 2020, 418: 213380.

    [5] YAN M, XUE H G, GUO S P. Recent achievements in lone-pair cation-based infrared second-order nonlinear optical materials[J]. Crystal Growth & Design, 2021, 21(1): 698-720.

    [6] CHEN H, WEI W B, LIN H, et al. Transition-metal-based chalcogenides: a rich source of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2021, 448: 214154.

    [7] CHEN J, HU C L, KONG F, et al. High-performance second-harmonic-generation (SHG) materials: new developments and new strategies[J]. Accounts of Chemical Research, 2021, 54(12): 2775-2783.

    [8] MUTAILIPU M, POEPPELMEIER K R, PAN S L. Borates: a rich source for optical materials[J]. Chemical Reviews, 2021, 121(3): 1130-1202.

    [9] ZHAO J, MEI D J, WANG W K, et al. Recent advances in nonlinear optical rare earth structures[J]. Journal of Rare Earths, 2021, 39(12): 1455-1466.

    [10] CHEN H, RAN M Y, WEI W B, et al. A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications[J]. Coordination Chemistry Reviews, 2022, 470: 214706.

    [11] LI C X, MENG X H, LI Z A, et al. Hg-based chalcogenides: an intriguing class of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2022, 453: 214328.

    [12] LUO X Y, LI Z, GUO Y W, et al. Recent progress on new infrared nonlinear optical materials with application prospect[J]. Journal of Solid State Chemistry, 2019, 270: 674-687.

    [13] CAI W B, ABUDURUSULI A, XIE C W, et al. Toward the rational design of mid-infrared nonlinear optical materials with targeted properties via a multi-level data-driven approach[J]. Advanced Functional Materials, 2022, 32(23): 2200231.

    [14] WU M F, TIKHONOV E, TUDI A, et al. Target-driven design of deep-UV nonlinear optical materials via interpretable machine learning[J]. Advanced Materials, 2023, 35(23): e2300848.

    [15] BIAN Q, YANG Z H, WANG Y, et al. Predicting global minimum in complex beryllium borate system for deep-ultraviolet functional optical applications[J]. Scientific Reports, 2016, 6: 34839.

    [16] BIAN Q A, YANG Z H, WANG Y C, et al. Computer-assisted design of a superior Be2BO3F deep-ultraviolet nonlinear-optical material[J]. Inorganic Chemistry, 2018, 57(10): 5716-5719.

    [17] ZHANG B B, TIKHONOV E, XIE C W, et al. Prediction of fluorooxoborates with colossal second harmonic generation (SHG) coefficients and extremely wide band gaps: towards modulating properties by tuning the BO3/BO3F ratio in layers[J]. Angewandte Chemie International Edition, 2019, 58(34): 11726-11730.

    [18] HOU D W, NISSIMAGOUDAR A S, BIAN Q A, et al. Prediction and characterization of NaGaS2, a high thermal conductivity mid-infrared nonlinear optical material for high-power laser frequency conversion[J]. Inorganic Chemistry, 2019, 58(1): 93-98.

    [19] WANG R, LIANG F, LIN Z S. Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances[J]. Scientific Reports, 2020, 10: 3486.

    [20] KANG L, ZHOU M L, YAO J Y, et al. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis[J]. Journal of the American Chemical Society, 2015, 137(40): 13049-13059.

    [21] ZHANG Z Y, LIU X, SHEN L, et al. Machine learning with multilevel descriptors for screening of inorganic nonlinear optical crystals[J]. The Journal of Physical Chemistry C, 2021, 125(45): 25175-25188.

    [22] FAN Z, SUN Z X, WANG A, et al. Machine learning regression model for predicting the formation energy of nonlinear optical crystals[J]. Advanced Theory and Simulations, 2023, 6(3): 2200883.

    [23] CURTAROLO S, HART G L W, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12(3): 191-201.

    [24] DE PABLO J J, JACKSON N E, WEBB M A, et al. New frontiers for the materials genome initiative[J]. NPJ Computational Materials, 2019, 5: 41.

    [27] JIANG X M, DENG S Q, WHANGBO M H, et al. Material research from the viewpoint of functional motifs[J]. National Science Review, 2022, 9(7): nwac017.

    [28] AVERSA C, SIPE J E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis[J]. Physical Review B, 1995, 52(20): 14636-14645.

    [29] RASHKEEV S N, LAMBRECHT W R L, SEGALL B. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors[J]. Physical Review B, 1998, 57(7): 3905-3919.

    [30] SHARMA S, AMBROSCH-DRAXL C. Second-harmonic optical response from first principles[J]. Physica Scripta, 2004, T109: 128.

    [31] CHEN C T, WU Y C, LI R K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series[J]. International Reviews in Physical Chemistry, 1989, 8(1): 65-91.

    [32] VEITHEN M, GONZE X, GHOSEZ P. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory[J]. Physical Review B, 2005, 71(12): 125107.

    [33] LI Z, LIU Q, HAN S J, et al. Nonlinear electronic polarization and optical response in borophosphate BPO4[J]. Physical Review B, 2016, 93(24): 245125.

    [34] LI Z, LIU Q, WANG Y, et al. Second-harmonic generation in noncentrosymmetric phosphates[J]. Physical Review B, 2017, 96(3): 035205.

    [35] LI J, DUAN C G, GU Z Q, et al. First-principles calculations of the electronic structure and optical properties of LiB3O5, CsB3O5, and BaB2O4 crystals[J]. Physical Review B, 1998, 57(12): 6925.

    [36] DUAN C G, LI J, GU Z Q, et al. Interpretation of the nonlinear optical susceptibility of borate crystals from first principles[J]. Physical Review B, 1999, 59(1): 369-372.

    [37] DUAN C G, LI J, GU Z Q, et al. First-principles calculation of the second-harmonic-generation coefficients of borate crystals[J]. Physical Review B, 1999, 60(13): 9435-9443.

    [38] LIN J A, LEE M H, LIU Z P, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals[J]. Physical Review B, 1999, 60(19): 13380-13389.

    [39] TRAN T T, HE J G, RONDINELLI J M, et al. RbMgCO3F: a new beryllium-free deep-ultraviolet nonlinear optical material[J]. Journal of the American Chemical Society, 2015, 137(33): 10504-10507.

    [40] WU H P, YU H W, YANG Z H, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response[J]. Journal of the American Chemical Society, 2013, 135(11): 4215-4218.

    [41] LI Z H, ZHANG A M, LUO H G. The microscopic origin of second harmonic generation response: the spatial structure of instantaneous dipole moments in electron excitation[J]. Angewandte Chemie International Edition, 2022, 61(44): e202212125.

    [42] LI Z H, DENG S Q, WHANGBO M H, et al. Orbital projection technique to explore the materials genomes of optical susceptibilities[J]. AIP Advances, 2022, 12(5): 055206.

    [43] CHENG X Y, WHANGBO M H, GUO G C, et al. The large second-harmonic generation of LiCs2PO4 is caused by the metal-cation-centered groups[J]. Angewandte Chemie International Edition, 2018, 57(15): 3933-3937.

    [44] CHENG X Y, LI Z H, WU X T, et al. Key factors controlling the large second harmonic generation in nonlinear optical materials[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9434-9439.

    [45] CHENG X Y, ZHANG Y P, LIU L J, et al. Structure and origin of the second-harmonic generation response of nonlinear optical material Sr2Be2B2O7[J]. The Journal of Physical Chemistry Letters, 2021, 12(46): 11399-11405.

    [46] ALMOUSSAWI B, YAO W D, GUO S P, et al. Negative second harmonic response of Sn4+ in the fresnoite oxysulfide Ba2SnSSi2O7[J]. Chemistry of Materials, 2022, 34(10): 4375-4383.

    [47] JIA M H, CHENG X Y, WHANGBO M H, et al. Second harmonic generation responses of KH2PO4: importance of K and breaking down of Kleinman symmetry[J]. RSC Advances, 2020, 10(44): 26479-26485.

    [48] CAI Z W, CHENG X Y, WHANGBO M H, et al. The partition principles for atomic-scale structures and their physical properties: application to the nonlinear optical crystal material KBe2BO3F2[J]. Physical Chemistry Chemical Physics, 2020, 22(34): 19299-19306.

    [49] CHENG X Y, WHANGBO M H, HONG M C, et al. Dependence of the second-harmonic generation response on the cell volume to band-gap ratio[J]. Inorganic Chemistry, 2019, 58(15): 9572-9575.

    [50] GUO S P, CHENG X Y, SUN Z D, et al. Large second harmonic generation (SHG) effect and high laser-induced damage threshold (LIDT) observed coexisting in gallium selenide[J]. Angewandte Chemie International Edition, 2019, 58(24): 8087-8091.

    [51] YE R P, CHENG X Y, LIU B W, et al. Strong nonlinear optical effect attained by atom-response-theory aided design in the Na2MIIMIV2Q6 (MII=Zn, Cd; MIV=Ge, Sn; Q=S, Se) chalcogenide system[J]. Journal of Materials Chemistry C, 2020, 8: 1244-1247.

    [52] YAO W D, CHENG X Y, GUO S P, et al. Phase competition and strong SHG responses of the Li2MIIMIVSe4 family: atom response theory predictions versus experimental results[J]. Chemistry of Materials, 2023, 35(3): 1159-1167.

    [55] ECONOMOU E N. Green’s functions in quantum physics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979.

    [56] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen Der Physik, 1927, 389(20): 457-484.

    [57] SUTTON A P, FINNIS M W, PETTIFOR D G, et al. The tight-binding bond model[J]. Journal of Physics C: Solid State Physics, 1988, 21(1): 35-66.

    [58] DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations[J]. The Journal of Physical Chemistry, 1993, 97(33): 8617-8624.

    [59] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.

    [60] SHEN Y G, YANG Y, ZHAO S G, et al. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation[J]. Chemistry of Materials, 2016, 28(19): 7110–7116.

    [61] LI L, WANG Y, LEI B H, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response[J]. Journal of the American Chemical Society, 2016, 138(29): 9101-9104.

    [62] JIANG X X, ZHAO S G, LIN Z S, et al. The role of dipole moment in determining the nonlinear optical behavior of materials: ab initio studies on quaternary molybdenum tellurite crystals[J]. Journal of Materials Chemistry C, 2014, 2(3): 530-537.

    [63] KLEINMAN D A. Nonlinear dielectric polarization in optical media[J]. Physical Review, 1962, 126(6): 1977-1979.

    [64] CHEN C T, WANG Y B, WU B C, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7[J]. Nature, 1995, 373(6512): 322-324.

    [65] KESZLER D. Borates for optical frequency conversion[J]. Current Opinion in Solid State & Materials Science, 1996, 1: 204-211.

    [66] HE M, KIENLE L, SIMON A, et al. Re-examination of the crystal structure of Na2Al2B2O7: stacking faults and twinning[J]. Journal of Solid State Chemistry, 2004, 177(9): 3212-3218.

    [67] MENG X Y, WEN X H, LIU G L. Structure and stacking faults in Sr2Be2B2O7 crystal[J]. Journal of the Korean Physical Society, 2008, 52(9(4)): 1277-1280.

    [68] ZHAO S G, KANG L, SHEN Y G, et al. Designing a beryllium-free deep-ultraviolet nonlinear optical material without a structural instability problem[J]. Journal of the American Chemical Society, 2016, 138(9): 2961-2964.

    [70] LIU B W, JIANG X M, WANG G E, et al. Oxychalcogenide BaGeOSe2: highly distorted mixed-anion building units leading to a large second-harmonic generation response[J]. Chemistry of Materials, 2015, 27(24): 8189-8192.

    [71] SALTER E J T, BLANDY J N, CLARKE S J. Crystal and magnetic structures of the oxide sulfides CaCoSO and BaCoSO[J]. Inorganic Chemistry, 2016, 55(4): 1697-1701.

    [72] WANG R Q, LIANG F, WANG F K, et al. Sr6Cd2Sb6O7S10: strong SHG response activated by highly polarizable Sb/O/S groups[J]. Angewandte Chemie, 2019, 58(24): 8078-8081.

    [73] KAGEYAMA H, HAYASHI K, MAEDA K, et al. Expanding frontiers in materials chemistry and physics with multiple anions[J]. Nature Communications, 2018, 9: 772.

    [74] CLARK D J, ZHANG J H, CRAIG A J, et al. The Kurtz-Perry powder technique revisited: a case study on the importance of reference quality and broadband nonlinear optical measurements using LiInSe2[J]. Journal of Alloys and Compounds, 2022, 917: 165381.

    [75] YANG T T, HUANG X L, CHENG X Y, et al. Prediction of large second harmonic generation in the metal-oxide/organic hybrid compound CuMoO3(p2c)[J]. Symmetry, 2022, 14(4): 824.

    [76] ABUDURUSULI A, LI J J, PAN S L. A review on the recently developed promising infrared nonlinear optical materials[J]. Dalton Transactions, 2021, 50(9): 3155-3160.

    [77] GAO L H, XU J W, TIAN X Y, et al. AgGaSe2-inspired nonlinear optical materials: tetrel selenides of alkali metals and mercury[J]. Chemistry of Materials, 2022, 34(13): 5991-5998.

    CHENG Xiyue, MI Hanxiang, HONG Maochun, DENG Shuiquan. New Insights and Applications from Atom Response Theory of Nonlinear Optical Materials[J]. Journal of Synthetic Crystals, 2023, 52(7): 1270
    Download Citation