• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101008 (2022)
Fei Wang1、3、*, Manman Ding1、2, Deyuan Shen1、2、3、**, Jun Wang1、2, and Dingyuan Tang1、2
Author Affiliations
  • 1Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
  • 2Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
  • 3Jiangsu Institute of Mid Infrared Laser Applied Technology, Xuzhou, Jiangsu 221000, China
  • show less
    DOI: 10.3788/CJL202249.0101008 Cite this Article Set citation alerts
    Fei Wang, Manman Ding, Deyuan Shen, Jun Wang, Dingyuan Tang. Research Progress of LD-Pumped 3 μm Er-Doped Solid-State Lasers[J]. Chinese Journal of Lasers, 2022, 49(1): 0101008 Copy Citation Text show less
    References

    [1] Wang F F, Nie H K, Liu J T et al. Miniaturized widely tunable MgO∶PPLN nanosecond optical parametric oscillator[J]. Chinese Journal of Lasers, 48, 0501015(2021).

    [2] Zhang Y, Yang C A, Shang J M et al. Research progress of semiconductor interband cascade lasers[J]. Acta Optica Sinica, 41, 0114004(2021).

    [3] Li S S, Wang B Y, Zhou G J et al. 1 W quantum cascade laser with fiber coupled output[J]. Chinese Journal of Lasers, 47, 1116001(2020).

    [4] Pollack S A, Chang D B. Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals[J]. Optical and Quantum Electronics, 22, S75-S93(1990).

    [5] Pollack S A, Chang D B. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals[J]. Journal of Applied Physics, 64, 2885-2893(1988).

    [6] Wyss C, Lüthy W, Weber H P et al. Emission properties of an optimised 2.8 μm Er3+∶YLF laser[J]. Optics Communications, 139, 215-218(1997).

    [7] Fleischman Z D, Sanamyan T. Spectroscopic analysis of Er3+∶Y2O3 relevant to 2.7 μm mid-IR laser[J]. Optical Materials Express, 6, 3109-3118(2016).

    [8] Chen D W, Fincher C L, Rose T S et al. Diode-pumped 1-W continuous-wave Er∶YAG 3-mum laser[J]. Optics Letters, 24, 385-387(1999).

    [9] Pollnan M, Jackson S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 30-40(2001).

    [10] Pollnau M, Lüthy W, Weber H P et al. Investigation of diode-pumped 2.8 μm laser performance in Er∶BaY2F8[J]. Optics Letters, 21, 48-50(1996).

    [11] Eichler H J, Findeisen J, Liu B N et al. Highly efficient diode-pumped 3 μm Er∶BaY2F8 laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 3, 90-94(1997).

    [12] Jensen T, Chai B H T, Diening A et al. Investigation of diode-pumped 2.8-μm Er∶LiYF4 lasers with various doping levels[J]. Optics Letters, 21, 585-587(1996).

    [13] Jensen T, Ostroumov V G, Huber G. Upconversion processes in Er:YSGG and diode pumped laser experiments at 2.8 μm[C], 366-370(1995).

    [14] Richard S, Jan S, Helena J. Er-doped crystalline active media for~3 μm diode-pumped lasers[J]. Progress in Quantum Electronics, 74, 100276(2020).

    [15] Georgescu S, Toma O, Totia H. Intrinsic limits of the efficiency of 3-μm Er∶YAG laser[J]. Proceedings of SPIE, 5581, 98-113(2004).

    [16] Pollack S A, Chang D B. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals[J]. Journal of Applied Physics, 64, 2885-2893(1988).

    [17] Jensen T, Huber G, Petermann K. Quasi-cw diode pumped 2.8 μm laser operation of Er3+-doped garnets[C], IL5(1996).

    [18] Prokhorov A M, Zhekov V I, Murina T M et al. Pulsed YAG: Er laser efficiency (analysis of model equations)[J]. Laser Physics, 3, 79-83(1993).

    [19] Pollnau M, Spring R, Wittwer S et al. Investigations on the slope efficiency of a pulsed 2.8-μm Er3+∶LiYF4 laser[J]. Journal of the Optical Society of America B, 14, 974-978(1997).

    [20] Li T, Beil K, Kränkel C et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 2.85 μm[J]. Optics Letters, 37, 2568-2570(2012).

    [21] Yao W, Uehara H, Kawase H et al. Highly efficient Er∶YAP laser with 6.9 W of output power at 2920 nm[J]. Optics Express, 28, 19000-19007(2020).

    [22] Arbabzadah E A, Phillips C C, Damzen M J. Free-running and Q-switched operation of a diode pumped Er∶YSGG laser at the 3 μm transition[J]. Applied Physics B, 111, 333-339(2013).

    [23] Švejkar R, Šulc J, Jelínková H. Er∶Y2O3 high-repetition rate picosecond 2.7 μm laser[J]. Laser Physics Letters, 16, 075802(2019).

    [24] Sanamyan T. Efficient cryogenic mid-IR and eye-safe Er∶YAG laser[J]. Journal of the Optical Society of America B, 33, D1-D6(2016).

    [25] Messner M, Heinrich A, Hagen C et al. High brightness diode pumped Er∶YAG laser system at 2.94 μm with nearly 1 kW peak power[J]. Proceedings of SPIE, 9726, 972602(2016).

    [26] Yang J W, Wang L, Wu X Y et al. High peak power Q-switched Er∶YAG laser with two polarizers and its ablation performance for hard dental tissues[J]. Optics Express, 22, 15686-15696(2014).

    [27] Arbabzadah E, Chard S, Amrania H et al. Comparison of a diode pumped Er∶YSGG and Er∶YAG laser in the bounce geometry at the 3 μm transition[J]. Optics Express, 19, 25860-25865(2011).

    [28] Ye X L, Xu X F, Ren H J et al. Enhanced high-slope-efficiency and high-power LD side-pumped Er∶YSGG laser[J]. Applied Optics, 58, 9949-9954(2019).

    [29] Weber M J, Bass M, Andringa K et al. Czochralski growth and properties of YAlO3 laser crystals[J]. Applied Physics Letters, 15, 342-345(1969).

    [30] Kawase H, Yasuhara R. 2.92-μm high-efficiency continuous-wave laser operation of diode-pumped Er∶YAP crystal at room temperature[J]. Optics Express, 27, 12213-12220(2019).

    [31] Messner M, Heinrich A, Unterrainer K. High-energy diode side-pumped Er∶LiYF4 laser[J]. Applied Optics, 57, 1497-1503(2018).

    [32] Jensen T, Chai B H T, Diening A et al. Investigation of diode-pumped 2.8-μm Er∶LiYF4 lasers with various doping levels[J]. Optics Letters, 21, 585-587(1996).

    [33] Peters R, Kränkel C, Fredrich-Thornton S T et al. Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides[J]. Applied Physics B, 102, 509-514(2011).

    [34] Baer C R E, Kränkel C, Saraceno C J et al. Femtosecond thin-disk laser with 141 W of average power[J]. Optics Letters, 35, 2302-2304(2010).

    [35] Koopmann P, Lamrini S, Scholle K et al. Efficient diode-pumped laser operation of Tm: Lu2O3 around 2 μm[J]. Optics Letters, 36, 948-950(2011).

    [36] Koopmann P, Lamrini S, Scholle K et al. Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm[J]. Optical Materials Express, 1, 1447-1556(2011).

    [37] Koetke D, Huber D. Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals[J]. Applied Physics B, 61, 151-158(1995).

    [38] Sanamyan T, Kanskar M, Xiao Y et al. High power diode-pumped 2.7-μm Er3+∶Y2O3 laser with nearly quantum defect-limited efficiency[J]. Optics Express, 19, A1082-A1087(2011).

    [39] Ren X J, Wang Y, Fan X L et al. High-peak-power acousto-optically Q-switched Er∶Y2O3 ceramic laser at~2.7 μm[J]. IEEE Photonics Journal, 9, 1-6(2017).

    [40] Wang L, Huang H, Shen D et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 2.7 μm[J]. Optics Express, 22, 19495-19503(2014).

    [41] Li E H. Research on sesquioxide-based ceramic lasers at mid-infrared band[D], 55-58(2020).

    [42] Schmaul B, Huber G, Clausen R et al. Er3+∶YLiF4 continuous wave cascade laser operation at 1620 nm and 2810 nm at room temperature[J]. Applied Physics Letters, 62, 541-543(1993).

    [43] Sanamyan T, Simmons J, Dubinskii M. Efficient cryo-cooled 2.7-μm Er3+∶Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 7, 569-572(2010).

    [44] Sanamyan T, Simmons J, Dubinskii M. Efficient cryo-cooled 2.7-μm Er3+∶Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 7, 569-572(2010).

    [45] Sanamyan T. Diode pumped cascade Er∶Y2O3 laser[J]. Laser Physics Letters, 12, 125804(2015).

    Fei Wang, Manman Ding, Deyuan Shen, Jun Wang, Dingyuan Tang. Research Progress of LD-Pumped 3 μm Er-Doped Solid-State Lasers[J]. Chinese Journal of Lasers, 2022, 49(1): 0101008
    Download Citation