• Chinese Journal of Lasers
  • Vol. 50, Issue 11, 1101016 (2023)
Congcong Liu, Jiangyong He, Jin Li, Yu Ning, Fengkai Zhou, Pan Wang, Yange Liu, and Zhi Wang*
Author Affiliations
  • Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
  • show less
    DOI: 10.3788/CJL230625 Cite this Article Set citation alerts
    Congcong Liu, Jiangyong He, Jin Li, Yu Ning, Fengkai Zhou, Pan Wang, Yange Liu, Zhi Wang. Dynamic Characteristic Extraction and Prediction of Soliton Bound States in Passively Mode‐Locked Fiber Lasers[J]. Chinese Journal of Lasers, 2023, 50(11): 1101016 Copy Citation Text show less
    References

    [1] Weill R, Bekker A, Smulakovsky V et al. Noise-mediated Casimir-like pulse interaction mechanism in lasers[J]. Optica, 3, 189-192(2016).

    [2] Xie Z X, Deng L X, Ni Y M et al. Wavelength-tunable and asynchronous dual-wavelength mode-locked Er-Doped fiber laser[J]. Acta Optica Sinica, 43, 0414002(2023).

    [3] Dong Z K, Song Y R. Research progress of mode-locked fiber lasers based on saturable absorbers[J]. Chinese Journal of Lasers, 48, 0501006(2021).

    [4] He J Y, Wang P, He R J et al. Elastic and inelastic collision dynamics between soliton molecules and a single soliton[J]. Optics Express, 30, 14218-14231(2022).

    [5] Liu C C, He J Y, Wang P et al. Characteristic extraction of soliton dynamics based on convolutional autoencoder neural network[J]. Chinese Optics Letters, 21, 031901(2023).

    [6] Liu X M, Yao X K, Cui Y D. Real-time observation of the buildup of soliton molecules[J]. Physical Review Letters, 121, 023905(2018).

    [7] Liu C C, He J Y, Wang P et al. Dynamics of pulsating solitons derived from asymmetrical dispersive waves[J]. Optics Express, 31, 5963-5972(2023).

    [8] Han D D, Mei L Z, Zhang J Y et al. Dissipative soliton molecule mode-locked fiber laser with controllable separation[J]. Laser & Optoelectronics Progress, 58, 2114013(2021).

    [9] Du Y Q, Zeng C, He Z W et al. Coherent dissipative soliton intermittency in ultrafast fiber lasers[J]. Chinese Optics Letters, 20, 011401(2022).

    [10] Suzuki M, Boyraz O, Asghari H et al. Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy[J]. Optics Letters, 43, 1862-1865(2018).

    [11] Närhi M, Salmela L, Toivonen J et al. Machine learning analysis of extreme events in optical fibre modulation instability[J]. Nature Communications, 9, 4923(2018).

    [12] Salmela L, Tsipinakis N, Foi A et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J]. Nature Machine Intelligence, 3, 344-354(2021).

    [13] He J Y, Li C Y, Wang P et al. Soliton molecule dynamics evolution prediction based on LSTM neural networks[J]. IEEE Photonics Technology Letters, 34, 193-196(2022).

    [14] Xiong W, Redding B, Gertler S et al. Deep learning of ultrafast pulses with a multimode fiber[J]. APL Photonics, 5, 096106(2020).

    [15] Lu P Y, Kim S, Soljačić M. Extracting interpretable physical parameters from spatiotemporal systems using unsupervised learning[J]. Physical Review X, 10, 031056(2020).

    [16] Guidotti R, Monreale A, Ruggieri S et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 51, 1-42(2019).

    [17] Herink G, Kurtz F, Jalali B et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules[J]. Science, 356, 50-54(2017).

    [18] Han D D, Zhang J Y, Ren K L et al. Real-time measurement of fission dynamics of dissipative soliton[J]. Acta Optica Sinica, 42, 0706001(2022).

    [19] Wei X M, Jing J C, Shen Y C et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 9, 149(2020).

    [20] Genty G, Salmela L, Dudley J M et al. Machine learning and applications in ultrafast photonics[J]. Nature Photonics, 15, 91-101(2021).

    [21] Linot A J, Graham M D. Deep learning to discover and predict dynamics on an inertial manifold[J]. Physical Review E, 101, 062209(2020).

    [22] Li C Y, He J Y, He R J et al. Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers[J]. APL Photonics, 5, 116101(2020).

    [23] Krupa K, Tonello A, Barthélémy A et al. Multimode nonlinear fiber optics, a spatiotemporal avenue[J]. APL Photonics, 4, 110901(2019).

    [24] Xiao X S, Ding Y H, Fan S Z et al. Spatiotemporal period-doubling bifurcation in mode-locked multimode fiber lasers[J]. ACS Photonics, 9, 3974-3980(2022).

    [25] Raissi M, Karniadakis G E. Hidden physics models: machine learning of nonlinear partial differential equations[J]. Journal of Computational Physics, 357, 125-141(2018).

    [26] Iten R, Metger T, Wilming H et al. Discovering physical concepts with neural networks[J]. Physical Review Letters, 124, 010508(2020).

    [27] Ding X, Chaté H, Cvitanović P et al. Estimating the dimension of an inertial manifold from unstable periodic orbits[J]. Physical Review Letters, 117, 024101(2016).

    [28] Lusch B, Kutz J N, Brunton S L. Deep learning for universal linear embeddings of nonlinear dynamics[J]. Nature Communications, 9, 4950(2018).

    [29] Vlachas P R, Arampatzis G, Uhler C et al. Multiscale simulations of complex systems by learning their effective dynamics[J]. Nature Machine Intelligence, 4, 359-366(2022).

    [30] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 378, 686-707(2019).

    [31] Wang P, Bao C Y, Fu B et al. Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution[J]. Optics Letters, 41, 2254-2257(2016).

    [32] Jang J K, Erkintalo M, Murdoch S G et al. Ultraweak long-range interactions of solitons observed over astronomical distances[J]. Nature Photonics, 7, 657-663(2013).

    [33] Zhao L M, Tang D Y, Cheng T H et al. Passive harmonic mode locking of soliton bunches in a fiber ring laser[J]. Optical and Quantum Electronics, 40, 1053-1064(2008).

    [34] Lin S F, Lin Y H, Cheng C H et al. Stability and chirp of tightly bunched solitons from nonlinear polarization rotation mode-locked erbium-doped fiber lasers[J]. Journal of Lightwave Technology, 34, 5118-5128(2016).

    [35] Nimmesgern L, Beckh C, Kempf H et al. Soliton molecules in femtosecond fiber lasers: universal binding mechanism and direct electronic control[J]. Optica, 8, 1334-1339(2021).

    Congcong Liu, Jiangyong He, Jin Li, Yu Ning, Fengkai Zhou, Pan Wang, Yange Liu, Zhi Wang. Dynamic Characteristic Extraction and Prediction of Soliton Bound States in Passively Mode‐Locked Fiber Lasers[J]. Chinese Journal of Lasers, 2023, 50(11): 1101016
    Download Citation