• Frontiers of Optoelectronics
  • Vol. 8, Issue 2, 170 (2015)
Jian GAO1, Xiao PENG1, Peng LI2、*, Zhihua DING2, Junle QU1, and Hanben NIU1
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,Shenzhen University, Shenzhen 518060, China
  • 2State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1007/s12200-015-0480-4 Cite this Article
    Jian GAO, Xiao PENG, Peng LI, Zhihua DING, Junle QU, Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Frontiers of Optoelectronics, 2015, 8(2): 170 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P, Schuman J S, StinsonWG, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G. Optical coherence tomography. Science, 1991, 254(5035): 1178– 1181

    [2] Fujimoto J G, Brezinski M E, Tearney G J, Boppart S A, Bouma B, Hee M R, Southern J F, Swanson E A. Optical biopsy and imaging using optical coherence tomography. Nature Medicine, 1995, 1(9): 970–972

    [3] de Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters, 2003, 28(21): 2067–2069

    [4] Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Optics Express, 2003, 11(8): 889–894

    [5] Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183–2189

    [6] Fercher A F, Hitzenberger C K, Kamp G, El-Zaiat S Y. Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 1995, 117(1–2): 43–48

    [7] Golubovic B, Bouma B E, Tearney G J, Fujimoto J G. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. Optics Letters, 1997, 22(22): 1704–1706

    [8] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source. Optics Letters, 1997, 22(5): 340–342

    [9] Chen Z, Zhao Y, Srinivas S M, Nelson J S, Prakash N, Frostig R D. Optical Doppler tomography. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1134–1142

    [10] Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarizationsensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America B, Optical Physics, 1992, 9(6): 903–908

    [11] Xu C, Ye J, Marks D L, Boppart S A. Near-infrared dyes as contrastenhancing agents for spectroscopic optical coherence tomography. Optics Letters, 2004, 29(14): 1647–1649

    [12] Divetia A, Hsieh T, Zhang J, Chen Z, Bachman M, Li G. Dynamically focused optical coherence tomography for endoscopic applications. Applied Physics Letters, 2005, 86(10): 103902

    [13] Xiang S H, Chen Z, Zhao Y, Nelson J S. Multichannel signal detection of optical coherence tomography with different frequency bands. In: Proceedings of Conference on Lasers and Electro-Optics. 2000, 418

    [14] Rollins A M, Yazdanfar S, Barton J K, Izatt J A. Real-time in vivo color Doppler optical coherence tomography. Journal of Biomedical Optics, 2002, 7(1): 123–129

    [15] Wiesauer K, Pircher M, G tzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C, Stifter D. En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Optics Express, 2005, 13(3): 1015–1024

    [16] Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 1998, 3(6): 239–250

    [17] Shao Y, He Y, Ma H, Wang S, Zhang Y. Study on mildew infecting skin of naked mouse by optical coherence tomography. Acta Laser Biology Sinica, 2006, 15(5): 536–539 (in Chinese)

    [18] Tomlins P H, Wang R K. Theory, developments and applications of optical coherence tomography. Journal of Physics D, Applied Physics, 2005, 38(15): 2519–2535

    [19] Swanson E A, Izatt J A, Hee M R, Huang D, Lin C P, Schuman J S, Puliafito C A, Fujimoto J G. In vivo retinal imaging by optical coherence tomography. Optics Letters, 1993, 18(21): 1864–1866

    [20] Zhao Y, Chen Z, Saxer C, Xiang S, de Boer J F, Nelson J S. Phaseresolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Optics Letters, 2000, 25(2): 114–116

    [21] Zhao Y, Chen Z, Saxer C, Shen Q, Xiang S, de Boer J F, Nelson J S. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Optics Letters, 2000, 25(18): 1358– 1360

    [22] Westphal V, Yazdanfar S, Rollins A M, Izatt J A. Real-time, high velocity-resolution color Doppler optical coherence tomography. Optics Letters, 2002, 27(1): 34–36

    [23] Yang V X D, Gordon M, Seng-Yue E, Lo S, Qi B, Pekar J, Mok A, Wilson B, Vitkin I. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis. Optics Express, 2003, 11(14): 1650–1658

    [24] Ding Z, Zhao Y, Ren H, Nelson J, Chen Z. Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Optics Express, 2002, 10(5): 236–245

    [25] Yazdanfar S, Rollins A M, Izatt J A. Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Optics Letters, 2000, 25(19): 1448–1450

    [26] Yazdanfar S, Rollins A M, Izatt J A.In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Archives of Ophthalmology, 2003, 121(2): 235– 239

    [27] Nassif N, Cense B, Park B H, Yun S H, Chen T C, Bouma B E, Tearney G J, de Boer J F. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Optics Letters, 2004, 29(5): 480–482

    [28] Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express, 2003, 11(23): 3116– 3121

    [29] White B, Pierce M, Nassif N, Cense B, Park B, Tearney G, Bouma B, Chen T, de Boer J. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Optics Express, 2003, 11(25): 3490–3497

    [30] Chen T C, Cense B, Pierce M C, Nassif N, Park B H, Yun S H, White B R, Bouma B E, Tearney G J, de Boer J F. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Archives of Ophthalmology, 2005, 123 (12): 1715–1720

    [31] Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Optics Express, 2006, 14(17): 7821–7840

    [32] Wang R K, Jacques S L, Ma Z, Hurst S, Hanson S R, Gruber A. Three dimensional optical angiography. Optics Express, 2007, 15 (7): 4083–4097

    [33] Vakoc B J, Lanning R M, Tyrrell J A, Padera T P, Bartlett L A, Stylianopoulos T, Munn L L, Tearney G J, Fukumura D, Jain R K, Bouma B E. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Medicine, 2009, 15(10): 1219–1223

    [34] Cardon S Z, Oestermeyer C F, Bloch E H. Effect of oxygen on cyclic red blood cell flow in unanesthetized mammalian striated muscle as determined by microscopy. Microvascular Research, 1970, 2(1): 67–76

    [35] Sandison J C. The transparent chamber of the rabbit’s ear, giving a complete description of improved technic of construction and introduction, and general account of growth and behavior of living cells and tissues as seen with the microscope. American Journal of Anatomy, 1928, 41(3): 447–473

    [36] LaschkeMW, MengerMD. In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. Human Reproduction Update, 2007, 13(4): 331–342

    [37] Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain R K. Time-dependent vascular regression and permeability changes in established human tumor Xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proceeding of the National Academy of Sciences, 1996, 93(25): 14765–14770

    [38] Huang D, Swanson E A, Lin C P, Schuman J S, StinsonWG, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A. Optical coherence tomography. Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology, 1993

    [39] Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E. Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, 27 (20): 1800–1802

    [40] Leitgeb R, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, Stingl A, Fercher A. Ultrahigh resolution Fourier domain optical coherence tomography. Optics Express, 2004, 12(10): 2156– 2165

    [41] Zhou J. Experimental observation on mice using dose phenobarbital sodium. Shanghai Laboratory Animal Science, 1988, 3: 139 (in Chinese)

    Jian GAO, Xiao PENG, Peng LI, Zhihua DING, Junle QU, Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Frontiers of Optoelectronics, 2015, 8(2): 170
    Download Citation