[1] ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759.
[6] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite: a review[J]. Journal of the European Ceramic Society, 2008, 28(2): 329-344.
[9] SUN Z H, YU J, ZHAO H Z, et al. Damage mechanism and design optimization of mullite-cordierite sagger used as the sintering cathode material in Li-ion batteries[J]. Journal of the European Ceramic Society, 2022, 42(13): 6255-6263.
[10] WANG H L, LI Y B, XIANG R F, et al. Synthesizing low-cost, high-corrosion-resistant refractory kiln furniture for the calcination of Li-ion battery cathode materials[J]. Ceramics International, 2021, 47(3): 4049-4054.
[13] DUAN X K, ZHENG H, CHEN Y Q, et al. Study on the corrosion resistance of cordierite-mullite and SiC refractories to Li-ion ternary cathode materials[J]. Ceramics International, 2020, 46(3): 2829-2835.
[14] XIANG K, LI S J, LI Y B, et al. Interactions of Li2O volatilized from ternary lithium-ion battery cathode materials with mullite sagger materials during calcination[J]. Ceramics International, 2022, 48(16): 23341-23347.
[15] ZHAI P T, CHEN L G, YIN Y M, et al. Interactions between mullite sagger refractories and Li-ion battery cathode materials during calcination[J]. Journal of the European Ceramic Society, 2018, 38(4): 2145-2151.