• Optics and Precision Engineering
  • Vol. 21, Issue 8, 2121 (2013)
WANG Ling*, LIU De-ying, and JI Chang-ying
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20132108.2121 Cite this Article
    WANG Ling, LIU De-ying, JI Chang-ying. Comparison of two feature selection algorithms oriented to raw cotton ripeness discrimination[J]. Optics and Precision Engineering, 2013, 21(8): 2121 Copy Citation Text show less
    References

    [1] SUN W Y. Research on feature selection for pattern classification [D]. Harbin: Harbin University of Science and Technology, 2009. (in Chinese)

    [2] NG W W Y, YEUNG D S, FIRTH M, et al.. Feature selection using localized generalization error for supervised classification problems using RBFNN [J]. Pattern Recognition, 2008, 41(12): 3706-3719.

    [3] RUIZ R, RIQUELME J C, AGUILAR-RUIZ J S. Incremental wrapper-based gene selection from microarray data for cancer classification [J]. Pattern Recognition, 2006, 39(12): 2383-2392.

    [4] LIANG J N, YANG S, WINSTANLEY A. Invariant optimal feature selection: A distance discriminant and feature ranking based solution [J]. Pattern Recognition, 2008(5),41: 1429-1439.

    [5] LIU Y, ZHENG Y F. FS_SFS: A novel feature selection method for support vector machines [J]. Pattern Recognition, 2006, 39(7): 1333-1345.

    [6] SEBBAN M, NOCK R. A hybrid filter/wrapper approach of feature selection using information theory [J]. Pattern Recognition, 2002, 35(4): 835-846.

    [7] DONG M, KOTHARI R. Feature subset selection using a new definition of classifiability [J]. Pattern Recognition Letters, 2003, 24(9-10): 1215-1225.

    [8] HUA J P, TEMBE W D, DOUGHERTY E R. Performance of feature-selection methods in the classification of high-dimension data [J]. Pattern Recognition, 2009, 42(3): 409-424.

    [9] NAKARIYAKUL S, CASSASENT D P. An improvement on floating search algorithms for feature subset selection [J]. Pattern Recognition, 2009, 42(9): 1932-1940.

    [10] LI X F, ZHU W X, JI B, et al.. Shape feature selection and weed recognition based on image processing and ant colony optimization [J]. Transactions of the CSAE, 2010, 26(10): 178-182. (in Chinese)

    [11] DONG Y, ZHANG T, LI W M,et al.. Identification and design of roll axis servo system in airborne stereo mapping camera[J]. Opt. Precision Eng., 2011, 19(7): 1580-1587. (in Chinese)

    [12] DONG CH, TIAN L F. Hyperspectral image classification by steepest ascent relevance vector machine[J]. Opt. Precision Eng., 2012,20(6): 1398-1405. (in Chinese)

    [13] WEBB A R. Statistical Pattern Recognition [M]. 2nd ed. Wang Ping et al. translation. Beijing: Publishing House of Electronics Industry, 2004. (in Chinese)

    [14] FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers [J]. Machine Learning, 1997, 29(2-3): 131-163.

    [15] SONG F X, GAO X M, LIU SH H, et al.. Dimensionality reduction in statistical pattern recognition and low loss dimensional ity reduction [J]. Chinese Journal of Computers, 2005, 28(11): 1915-1922.(in Chinese)

    WANG Ling, LIU De-ying, JI Chang-ying. Comparison of two feature selection algorithms oriented to raw cotton ripeness discrimination[J]. Optics and Precision Engineering, 2013, 21(8): 2121
    Download Citation