• High Power Laser and Particle Beams
  • Vol. 32, Issue 12, 121001 (2020)
Wenchang Lai, Pengfei Ma, Hu Xiao, Wei Liu, Can Li, Man Jiang, Jiangming Xu, Rongtao Su, Jinyong Leng, Yanxing Ma, and Pu Zhou*
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.11884/HPLPB202032.200186 Cite this Article
    Wenchang Lai, Pengfei Ma, Hu Xiao, Wei Liu, Can Li, Man Jiang, Jiangming Xu, Rongtao Su, Jinyong Leng, Yanxing Ma, Pu Zhou. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001 Copy Citation Text show less
    [in Chinese]
    Fig. 1. [in Chinese]
    [in Chinese]
    Fig. 2. [in Chinese]
    [in Chinese]
    Fig. 3. [in Chinese]
    [in Chinese]
    Fig. 4. [in Chinese]
    [in Chinese]
    Fig. 5. [in Chinese]
    [in Chinese]
    Fig. 6. [in Chinese]
    [in Chinese]
    Fig. 7. [in Chinese]
    [in Chinese]
    Fig. 8. [in Chinese]
    [in Chinese]
    Fig. 9. [in Chinese]
    [in Chinese]
    Fig. 10. [in Chinese]
    [in Chinese]
    Fig. 11. [in Chinese]
    [in Chinese]
    Fig. 12. [in Chinese]
    [in Chinese]
    Fig. 13. [in Chinese]
    [in Chinese]
    Fig. 14. [in Chinese]
    [in Chinese]
    Fig. 15. [in Chinese]
    [in Chinese]
    Fig. 16. [in Chinese]
    [in Chinese]
    Fig. 17. [in Chinese]
    [in Chinese]
    Fig. 18. [in Chinese]
    [in Chinese]
    Fig. 19. [in Chinese]
    fiber typedoped ionsyearinstitutionstructurewavelength/nmpower/mWlinewidth/kHzRef.
    silica fiberTm2017Tianjin UniversityDBR192012036[63]
    Yb:YAG2019Shandong UniversityDBR10641101300[43]
    Nd2020SCUTDBR11201571.5[44]
    phosphate fiberYb2004NP PhotonicsDBR1064.22003[57]
    Yb2011SCUTDBR1064400<7[53]
    Yb2012NP PhotonicsDBR976100<3[42]
    Yb2013SCUTDBR1014164<7[58]
    Yb2013SCUTDBR1083100<2[59]
    Yb2016SCUTDBR1120625.7[60]
    Er-Yb2003DBR15602001.75[64]
    Er-Yb2005The University of ArizonaDBR15501600[65]
    Er-Yb2005The University of ArizonaDBR15351900[66]
    Er-Yb(PCF)2006The University of ArizonaDFB15342300[45]
    Er-Yb2008The University of ArizonaDFB1536165[40]
    Er-Yb2010SIOMDBR1535100<5[61]
    Er-Yb2010SCUTDBR15353061.6[62]
    Er-Yb2013DBR1538550<60[54]
    germanate fiberTm2007NP PhotonicsDFB1893503[39]
    Tm2018SCUTDBR195061712.5[46]
    Tm2019Zhejiang Universityring cavity195740020[52]
    Tm2019University of SouthamptonDBR19521520[47]
    silicate fiberTm2009AdValue PhotonicsDFB195040<3[41]
    Table 1.

    Typical progress of single frequency Yb-doped fiber oscillators

    单频光纤振荡器研究进展

    yearinstitutionconfigurationpower/Wwavelength/nmPER/dBM2approachesRef.
    2005University of Southamptonbulk264106016<1.1counter-pumping[68]
    2007University of Southamptonbulk5111060Non1.6LMA fiber[69]
    2007Corningbulk5021064Non1.4bi-directionally pumping[70]
    2011AFRLbulk494106415<1.3ATF and counter-pumping[72]
    2011University of Michiganbulk5111064151.19chirally-coped-core fiber[71]
    2014AFRLbulk8111064NA<1.2ATF and thermal gradient[73]
    2008OFS Laboratoriesall-fiber1941083Non1.2acoustically-designed fiber[74]
    2011AFRLall-fiber2031065NAthermal gradient and gain competition[80]
    2012Laser Zentrum Hannoverall-fiber3011064Noncounter-pumping and thermal gradient[75]
    2012NUDTall-fiber3101064Non1.3LMA fiber[81]
    2013NUDTall-fiber3321064211.4LMA fiber[76]
    2013SIOMall-fiber1701064NA1.02strain gradient and thermal gradient[77]
    2017NUDTall-fiber414106416.91.34LMA fiber and strain gradient[78]
    2020NUDTall-fiber5501030Non1.47tapered fiber[79]
    2019LIGO Laboratoriesall-fiber178106419<1.32specialty LMA fiber[15]
    2019Laser Zentrum Hannoverall-fiber200106419LMA fiber and thermal gradient[82]
    2020University of Bordeauxall-fiber365106417<1.1LMA fiber and short fiber length[83]
    Table 2.

    Typical progress of single frequency Yb-doped fiber amplifiers (Non: nonlinearly polarized state, NA: not available, ATF: acoustically tailored fiber, T-YDF: tapered Yb-doped fiber, LMA: large mode area)

    单频掺镱光纤放大器研究进展

    yearinstitutionpower/kWlinewidthM2PER/dBRef
    2015HFB Photonics2.0575 GHz<1.4Non[106]
    2015Tianjin University0.5230 GHz<1.09>18[113]
    2016CAEP2.90.31 nmNon[107]
    2017NUDT1.0180.3 nm<1.2414[114]
    2017Tsinghua University3.122.5 nm1.58Non[111]
    2017CAEP1.0936.5 GHz1.114.5[108]
    2019Tsinghua University2.190.0865 nm1.46Non[112]
    2020CAEP3.080.2 nm<1.4511.6[22]
    Table 3.

    Progress of high power narrow-linewidth fiber lasers based on narrow-linewidth fiber oscillators

    基于窄线宽光纤振荡器的高功率窄线宽光纤激光研究进展

    modulation methodsyearinstitutionpower/kWlinewidthM2PER/dBRef
    sine modulation2011Fibertek, Inc.1<0.5 GHz<1.4Non[121]
    2016NUDT1.8945 GHz<1.315.5[122]
    WNS modulation2017NUDT2.430.255 nm18.3[123]
    2018NUDT3.940.89 nm1.86Non[24]
    2018CAEP2.554 GHz<1.21Non[138]
    2018CAEP3.50.38 nm1.9Non[124]
    2019CAEP1.513 GHz1.1413[139]
    2019NUDT0.8271.8 GHz12[140]
    2019SIOM3.0148 GHz1.17Non[127]
    2019CAEP2.6232 GHz<1.314.2[125]
    2019CAEP3.70.3 nm<1.36Non[126]
    2020NUDT4.090.9 nm1.05Non
    PRBS modulation2014AFRL1.173 GHz1.2Non[129]
    2015AFRL1.475 GHz1.17Non[141]
    2016AFRL12.3 GHz<1.2Non[130]
    2016MIT3.112 GHz<1.1510[23]
    2018University of Michigan2.220 GHz1.09Non[134]
    2020SIOM1.272.2 GHz<1.2Non[128]
    2020DSO National Laboratories, Singapore16.9 GHz1.19Non[135]
    unavailable phase modulation2016Jena30.171.3Non[136]
    2017Jena3.50.181.3Non[137]
    2018Jena4.4Non[26]
    2018IPG2.530 GHz<1.1Non[27]
    Table 4.

    Progress of high power narrow-linewidth fiber lasers based on phase modulation techniques

    基于相位调制技术的高功率窄线宽光纤激光研究进展

    Wenchang Lai, Pengfei Ma, Hu Xiao, Wei Liu, Can Li, Man Jiang, Jiangming Xu, Rongtao Su, Jinyong Leng, Yanxing Ma, Pu Zhou. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001
    Download Citation