• High Power Laser and Particle Beams
  • Vol. 36, Issue 3, 036001 (2024)
Wenyu Yang1, Xiang Chai1、2、*, Enping Zhu1, and Xiaojing Liu1、2
Author Affiliations
  • 1College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.11884/HPLPB202436.230388 Cite this Article
    Wenyu Yang, Xiang Chai, Enping Zhu, Xiaojing Liu. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36(3): 036001 Copy Citation Text show less
    References

    [1] Cameron G, Reynolds E. Integration of the Topaz 2 space nuclear react with the NEPSTP spacecraft[C]Proceedings of the Intersociety Energy Conversion Engineering Conference. 1994: 3817.

    [2] Thurman J L. Optimization of steady-state thermal design of space radiators[J]. Journal of Spacecraft and Rockets, 6, 1114-1119(1969).

    [3] Bellucci A, Girolami M, Trucchi D M. Thermionic thermoelectric energy conversion[M]Datas A. UltraHigh Temperature Thermal Energy Stage, Transfer Conversion. Duxfd: Woodhead Publishing, 2021: 253284.

    [4] Pastore G, Pizzocri D, Rabiti C, et al. An effective numerical algorithm for intra-granular fission gas release during non-equilibrium trapping and resolution[J]. Journal of Nuclear Materials, 509, 687-699(2018).

    [5] Olander D R, Wongsawaeng D. Re-solution of fission gas–A review: Part I. Intragranular bubbles[J]. Journal of Nuclear Materials, 354, 94-109(2006).

    [6] Pastore G, Luzzi L, Di Marcello V, et al. Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis[J]. Nuclear Engineering and Design, 256, 75-86(2013).

    [7] Hagrman D L, Reymann G A. MATPROVersion 11: a hbook of materials properties f use in the analysis of light water react fuel rod behavi[R]. Idaho Falls: Idaho National Lab. , 1979: 3744.

    [8] Luscher W G, Geelhood K J. Material property crelations: comparisons between FRAPCON3.4, FRAPTRAN 1.4, MATPRO[R]. Richl: Pacific Nthwest National Lab. , 2010: 4253.

    [9] Xue Shouyi. They of elasticity plasticity[M]. Beijing: China Building Materials Press, 2005: 2530

    [10] Karahan A. Modelling of thermomechanical irradiation behavi of metallic oxide fuels f sodium fast reacts[D]. Cambridge: Massachusetts Institute of Technology, 2009: 99103.

    [11] Deng Yangbin, Wu Yingwei, Gong Cheng, et al. Upgrade of FROBA code and its application in thermal-mechanical analysis of space reactor fuel[J]. Nuclear Engineering and Design, 332, 297-306(2018).

    [12] Baker C. The fission gas bubble distribution in uranium dioxide from high temperature irradiated sghwr fuel pins[J]. Journal of Nuclear Materials, 66, 283-291(1977).

    [13] White R J. The development of grain-face porosity in irradiated oxide fuel[J]. Journal of Nuclear Materials, 325, 61-77(2004).

    [14] Zhu Bin. Elasticity[M]. Hefei: University of Science Technology of China Press, 2008: 148151

    [15] Zhang Xibin. Stress and deformation analysis of cylindrical tubes[J]. Engineering Mechanics, 456-460(2000).

    [16] Valentini B, Leuprecht C, Plankensteiner A, et al. Finite element analysis of the high-temperature creep deformation of a TZM heavy duty charge carrier[J]. International Journal of Refractory Metals and Hard Materials, 53, 104-110(2015).

    Wenyu Yang, Xiang Chai, Enping Zhu, Xiaojing Liu. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36(3): 036001
    Download Citation