• Chinese Optics Letters
  • Vol. 22, Issue 3, 031304 (2024)
Yuedi Ding1、2, Chenglin Shang3, Wenqi Yu1、2, Xiang Ma1、2, Shaobo Li1、2, Cheng Zeng3、*, and Jinsong Xia3、**
Author Affiliations
  • 154th Institute, China Electronics Technology Group Corporation, Shijiazhuang 050011, China
  • 2Hebei Key Laboratory of Photonic Information Technology and Application (PITA), Shijiazhuang 050011, China
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.3788/COL202422.031304 Cite this Article Set citation alerts
    Yuedi Ding, Chenglin Shang, Wenqi Yu, Xiang Ma, Shaobo Li, Cheng Zeng, Jinsong Xia. Microwave photonic sideband selector based on thin-film lithium niobate platform[J]. Chinese Optics Letters, 2024, 22(3): 031304 Copy Citation Text show less
    References

    [1] S. Pan, J. Yao. Photonics-based broadband microwave measurement. J. Lightwave. Tech., 35, 3498(2016).

    [2] J. Yao. Microwave photonics. J. Lightwave. Tech., 27, 314(2009).

    [3] B. H. Kolner, D. W. Dolfi. Intermodulation distortion and compression in an integrated electrooptic modulator. Appl. Opt., 26, 3676(1987).

    [4] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80(2019).

    [5] D. Thomson, A. Zilkie, J. E. Bowers et al. Roadmap on silicon photonics. J. Optic., 18, 073003(2016).

    [6] W. Zhang, J. Yao. Silicon-based integrated microwave photonics. IEEE J. Quant. Electron., 52, 0600412(2015).

    [7] C. G. Roeloffzen, L. Zhuang, C. Taddei et al. Silicon nitride microwave photonic circuits. Opt. Express, 21, 22937(2013).

    [8] D. J. Moss, R. Morandotti, A. L. Gaeta et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597(2013).

    [9] M. Smit, X. Leijtens, H. Ambrosius et al. An introduction to InP-based generic integration technology. Semicond. Sci. Tech., 29, 083001(2014).

    [10] S. Jin, A. Bhardwaj, P. Herczfeld et al. RF/photonic link-on-chip PIC. IEEE Photon. Technol. Lett., 24, 1139(2012).

    [11] C. Wang, M. Zhang, X. Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [12] Y. Liu, H. Li, J. Liu et al. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Opt. Express, 29, 6320(2021).

    [13] M. He, M. Xu, Y. Ren et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359(2019).

    [14] P. Kharel, C. Reimer, K. Luke et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357(2021).

    [15] M. Xu, M. He, H. Zhang et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [16] F. Yang, X. Fang, X. Chen et al. Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth. Chin. Opt. Lett., 20, 022502(2022).

    [17] X. Liu, B. Xiong, C. Sun et al. Wideband thin-film lithium niobate modulator with low half-wave-voltage length product. Chin. Opt. Lett., 19, 060016(2021).

    [18] A. Prencipe, M. A. Baghban, K. Gallo. Tunable ultranarrowband grating filters in thin-film lithium niobate. ACS Photonics, 8, 2923(2021).

    [19] D. Pohl, F. Kaufmann, M. R. Escalé et al. Tunable Bragg grating filters and resonators in lithium niobate-on-insulator waveguides. CLEO: Science and Innovations, STu4J.5(2020).

    [20] M. R. Escalé, D. Pohl, A. Sergeyev et al. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett., 43, 1515(2018).

    [21] A. Mast, C. Middleton, S. Meredith et al. Extending frequency and bandwidth through the use of agile, high dynamic range photonic converters. 2012 IEEE Aerospace Conference, 1(2012).

    [22] X. Zou, H. Chi, J. Yao. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair. IEEE Trans. Microw. Theor. Tech., 57, 505(2009).

    [23] Z. Tang, S. Pan. Microwave photonic mixer with suppression of mixing spurs. 2015 14th International Conference on Optical Communications and Networks (ICOCN), 1(2015).

    [24] Z. Tang, Y. Li, J. Yao et al. Photonics‐based microwave frequency mixing: methodology and applications. Laser. Photon. Rev., 14, 1800350(2020).

    [25] X. Wang, C. Shang, A. Pan et al. Thin-film lithium niobate based dual-polarization IQ modulator for single-carrier 1.6 Tb/s transmission. Integrated Optics: Devices, Materials, and Technologies XXVI, 87(2022).

    [26] C. Shang, A. Pan, C. Hu et al. 112 Gb/s PAM4 electro-optic modulator based on thin-film LN-on-insulator. Optoelectronic Devices and Integration, OW1B.3(2019).

    [27] C. Hu, A. Pan, T. Li et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express, 29, 5397(2021).

    [28] Y. Ding, S. Tao, X. Wang et al. Thermo-optic tunable optical filters with GHz-bandwidth and flat-top passband on thin film lithium niobate platform. Opt. Express, 30, 22135(2022).

    Yuedi Ding, Chenglin Shang, Wenqi Yu, Xiang Ma, Shaobo Li, Cheng Zeng, Jinsong Xia. Microwave photonic sideband selector based on thin-film lithium niobate platform[J]. Chinese Optics Letters, 2024, 22(3): 031304
    Download Citation