• Photonics Research
  • Vol. 12, Issue 11, 2712 (2024)
Jingfan Wang1, Xing Zhao1,2,4, Yan Wang2,3, and Da Li1,2,*
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
  • 2Nankai University Eye Institute, Nankai University, Tianjin 300350, China
  • 3Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin 300020, China
  • 4e-mail: zhaoxingtjnk@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.533170 Cite this Article Set citation alerts
    Jingfan Wang, Xing Zhao, Yan Wang, Da Li, "Transport-of-intensity differential phase contrast imaging: defying weak object approximation and matched-illumination condition," Photonics Res. 12, 2712 (2024) Copy Citation Text show less
    References

    [1] H. Wang, J. Zhu, J. Sung. Fourier ptychographic topography. Opt. Express, 31, 11007-11018(2023).

    [2] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [3] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [4] D. J. Stephens, V. J. Allan. Light microscopy techniques for live cell imaging. Science, 300, 82-86(2003).

    [5] H. Giloh, J. W. Sedat. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science, 217, 1252-1255(1982).

    [6] G. Popescu. Quantitative Phase Imaging of Cells and Tissues(2011).

    [7] J. Zhang, J. Sun, Q. Chen. Resolution analysis in a lens-free on-chip digital holographic microscope. IEEE Trans. Comput. Imaging, 6, 697-710(2020).

    [8] M. Kumar, O. Matoba, X. Quan. Quantitative dynamic evolution of physiological parameters of RBC by highly stable digital holographic microscopy. Opt. Laser Eng., 151, 106887(2022).

    [9] M. K. Kim. Principles and techniques of digital holographic microscopy. SPIE Rev., 1, 018005(2010).

    [10] B. Kemper, A. Bauwens, D. Bettenworth. Label-free quantitative in vitro live cell imaging with digital holographic microscopy. Label-Free Monitoring of Cells In Vitro, 219-272(2019).

    [11] P. Gao, C. Yuan. Resolution enhancement of digital holographic microscopy via synthetic aperture: a review. Light Adv. Manuf., 3, 105-120(2022).

    [12] J. M. Soto, J. A. Rodrigo, T. Alieva. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy. Opt. Express, 25, 15699-15712(2017).

    [13] M. H. Jenkins, T. K. Gaylord. Quantitative phase microscopy via optimized inversion of the phase optical transfer function. Appl. Opt., 54, 8566-8579(2015).

    [14] L. Tian, L. Waller. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2, 104-111(2015).

    [15] G. Zheng, C. Shen, S. Jiang. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys., 3, 207-223(2021).

    [16] X. Ou, R. Horstmeyer, G. Zheng. High numerical aperture Fourier ptychography: principle, implementation and characterization. Opt. Express, 23, 3472-3491(2015).

    [17] Y. Fan, J. Sun, Y. Shu. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photon. Rev., 17, 2200201(2023).

    [18] J. A. Picazo-Bueno, V. Micó. Optical module for single-shot quantitative phase imaging based on the transport of intensity equation with field of view multiplexing. Opt. Express, 29, 39904-39919(2021).

    [19] C. Zuo, Q. Chen, W. Qu. High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Opt. Express, 21, 24060-24075(2013).

    [20] J. Li, Q. Chen, J. Sun. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy. Opt. Express, 26, 27599-27614(2018).

    [21] J. Jiang, F. Li, F. Yang. Single-shot color-coded LED microscopy for quantitative differential phase contrast imaging. Opt. Laser Technol., 161, 109192(2023).

    [22] R. Cao, M. Kellman, D. Ren. Self-calibrated 3D differential phase contrast microscopy with optimized illumination. Biomed. Opt. Express, 13, 1671-1684(2022).

    [23] L. Tian, L. Waller. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express, 23, 11394-11403(2015).

    [24] G. J. Williams, H. M. Quiney, A. G. Peele. Coherent diffractive imaging and partial coherence. Phys. Rev. B, 75, 104102(2007).

    [25] A. K. Gupta, N. K. Nishchal. A composite method of transport-of-intensity equation for the recovery of broad range of spatial frequencies. J. Opt., 51, 605-612(2022).

    [26] M. R. Teague. Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am., 73, 1434-1441(1983).

    [27] D. Paganin, A. Barty, P. McMahon. Quantitative phase-amplitude microscopy. III. The effects of noise. J. Microsc., 214, 51-61(2004).

    [28] L. Waller, L. Tian, G. Barbastathis. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Express, 18, 12552-12561(2010).

    [29] C. Zuo, Q. Chen, Y. Yu. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications. Opt. Express, 21, 5346-5362(2013).

    [30] L. Lu, J. Li, Y. Shu. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy. Adv. Photon., 4, 056002(2022).

    [31] C. Sheppard, A. Choudhury. Image formation in the scanning microscope. Opt. Acta, 24, 1051-1073(1977).

    [32] H. H. Hopkins. On the diffraction theory of optical images. Proc. R. Soc. London Ser. A, 217, 408-432(1953).

    [33] E. Wolf. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun., 1, 153-156(1969).

    [34] A. Devaney. Inverse-scattering theory within the Rytov approximation. Opt. Lett., 6, 374-376(1981).

    [35] J. Zhu, H. Wang, L. Tian. High-fidelity intensity diffraction tomography with a non-paraxial multiple-scattering model. Opt. Express, 30, 32808-32821(2022).

    [36] S. Chowdhury, M. Chen, R. Eckert. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica, 6, 1211-1219(2019).

    [37] Y. Fan, J. Sun, Y. Shu. Accurate quantitative phase imaging by differential phase contrast with partially coherent illumination: beyond weak object approximation. Photon. Res., 11, 442-455(2023).

    [38] J. Sun, C. Zuo, J. Zhang. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Sci. Rep., 8, 7669(2018).

    [39] Y. Fan, J. Sun, Q. Chen. Wide-field anti-aliased quantitative differential phase contrast microscopy. Opt. Express, 26, 25129-25146(2018).

    [40] Y. Shu, J. Sun, J. Lyu. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX, 3, 24(2022).

    [41] H. Ullah, J. Li, S. Zhou. Parallel synthetic aperture transport-of-intensity diffraction tomography with annular illumination. Opt. Lett., 48, 1638-1641(2023).

    [42] S. Zhou, J. Li, J. Sun. Transport-of-intensity Fourier ptychographic diffraction tomography: defying the matched illumination condition. Optica, 9, 1362-1373(2022).

    [43] J. Li, N. Zhou, J. Sun. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light Sci. Appl., 11, 154(2022).

    [44] C. Zuo, J. Li, J. Sun. Transport of intensity equation: a tutorial. Opt. Laser Eng., 135, 106187(2020).

    [45] E. Abbe. Beiträge zur theorie des mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 9, 413-468(1873).

    [46] H. Rose. Nonstandard imaging methods in electron microscopy. Ultramicroscopy, 2, 251-267(1976).

    [47] N. Streibl. Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A, 2, 121-127(1985).

    [48] D. Hamilton, C. Sheppard, T. Wilson. Improved imaging of phase gradients in scanning optical microscopy. J. Microsc., 135, 275-286(1984).

    [49] M. Bertero, P. Boccacci, C. De Mol. Introduction to Inverse Problems in Imaging(2021).

    [50] J. Li, Q. Chen, J. Zhang. Efficient quantitative phase microscopy using programmable annular LED illumination. Biomed. Opt. Express, 8, 4687-4705(2017).

    [51] C. J. Sheppard. Partially coherent microscope imaging system in phase space: effect of defocus and phase reconstruction. J. Opt. Soc. Am. A, 35, 1846-1854(2018).

    [52] D. Hamilton, C. Sheppard. Differential phase contrast in scanning optical microscopy. J. Microsc., 133, 27-39(1984).

    [53] F. Zernike. Diffraction and optical image formation. Proc. Phys. Soc., 61, 158(1948).

    [54] D. Paganin, K. A. Nugent. Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett., 80, 2586-2589(1998).

    Jingfan Wang, Xing Zhao, Yan Wang, Da Li, "Transport-of-intensity differential phase contrast imaging: defying weak object approximation and matched-illumination condition," Photonics Res. 12, 2712 (2024)
    Download Citation