• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 4, 1143 (2022)
SUN Bochao1,*, SUI Zexuan1, WANG Ci1, ZHAO Lei2..., GAO Zhigang3 and REN Jing1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20211116 Cite this Article
    SUN Bochao, SUI Zexuan, WANG Ci, ZHAO Lei, GAO Zhigang, REN Jing. Nano-Glass Composite Scintillators: Opportunities and Challenges[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1143 Copy Citation Text show less
    References

    [1] NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection[J]. Adv Opt Mater, 2015, 3(4): 463-481.

    [2] EIJK C W E. Inorganic scintillators in medical imaging[J]. Phys Med Biol, 2002, 47(8): R85-R106.

    [4] ALSHOURBAGY M, BIGOTTA S, HERBERT D, et al. Optical and scintillation properties of doped YAlO3 crystal fibers grown by -pulling down technique[J]. J Cryst Growth, 2007, 303(2): 500-505.

    [5] DIEHL S, NOVOTNY R W, AUBRY N, et al. Development and Characterization of Inorganic Scintillating Fibers Made of LuAG:Ce and LYSO:Ce[J]. IEEE T Nucl Sci, 2014, 61(1): 353-361.

    [6] NIE C D, BERA S, HARRINGTON J A. Growth of single-crystal YAG fiber optics[J]. Opt Express, 2016, 24(14): 15522-15527.

    [11] CHEN S, ZHANG W, TENG L, et al. Design, simulation, elaboration and luminescence of Tb3+-doped Ba0.84Gd0.16F2.16 fluoroaluminosilicate scintillating glass ceramics[J]. J Eur Ceram Soc, 2021, 41(13): 3722-3728.

    [12] LI X, CHEN D, HUANG F, et al. Phase-selective nanocrystallization of NaLnF4 in aluminosilicate glass for random laser and 940 nm LED-excitable upconverted luminescence[J]. Laser Photon Rev, 2018, 12(7): 1800030.

    [13] WEI Y, EBENDORFF-HEIDEPRIEM H, ZHAO J. Recent advances in hybrid optical materials: Integrating nanoparticles within a glass matrix[J]. Adv Opt Mater, 2019, 7(21): 1900702.

    [14] SUN X, HUANG S. Tb3+-activated SiO2-Al2O3-CaO-CaF2 oxyfluoride scintillating glass ceramics[J]. Nucl Instrum Meth A, 2010, 621(1-3): 322-325.

    [15] YANG B, WANG Q, ZHANG W, et al. Luminescent properties of Tb3+-doped transparent glass ceramics[J]. J Lumin, 2015, 158: 390-395.

    [16] CAO J, WANG X, LI X, et al. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals[J]. J Lumin, 2016, 170: 207-211.

    [17] CAO J, CHEN W, CHEN L, et al. Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging[J]. Ceram Int, 2016, 42(15): 17834-17838.

    [18] CAO J, CHEN L, CHEN W, et al. Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals[J]. Opt Mater Express, 2016, 6(7): 2201.

    [19] CHEN W, CAO J, HU F, et al. Highly efficient Na5Gd9F32:Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging[J]. Opt Mater Express, 2018, 8(1): 41.

    [20] ZHAO J, HUANG L, ZHAO S, et al. Enhanced luminescence in Tb3+‐doped germanate glass ceramic scintillators containing CaF2 nanocrystals[J]. J Am Ceram Soc, 2019, 102(4): 1720-1725.

    [21] GU Z. Enhanced luminescent properties of Tb3+-doped transparent oxyfluoride glass-ceramics containing YF3 nanocrystals[J]. Physica B, 2019, 556: 22-25.

    [22] GU Z, CHEN C, ZHANG Y. Enhanced luminescence in Tb3+-doped glass-ceramic scintillators containing LiYF4 nanocrystals[J]. Vacuum, 2019, 169: 108832.

    [23] ZHENG Z, TONG Y, WEI R, et al. Tb3+ ‐doped transparent BaGdF5 glass-ceramics scintillator for X‐ray detector[J]. J Am Ceram Soc, 2020, 103(4): 2548-2554.

    [24] TENG L, ZHANG W, CHEN W, et al. Highly efficient luminescence in bulk transparent Sr2GdF7:Tb3+ glass ceramic for potential X-ray detection[J]. Ceram Int, 2020, 46(8): 10718-10722.

    [25] OKADA G, UEDA J, TANABE S, et al. Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the canadian synchrotron[J]. J Am Ceram Soc, 2014, 97(7): 2147-2153.

    [26] HUANG S, GU M. Enhanced luminescent properties of Tb3+ ions in transparent glass ceramics containing BaGdF5 nanocrystals[J]. J Non-Cryst Solids, 2012, 358(1): 77-80.

    [27] OKADA G, EDGAR A, KASAP S, et al. Radioluminescence properties of Sm-doped fluorochlorozirconate glasses and glass-ceramics[J]. Jpn J Appl Phys, 2016, 55(2S): 02BC07.

    [28] DWARAKA VISWANATH C S, JAYASANKAR C K. Photoluminescence, γ-irradiation and X-ray induced luminescence studies of Sm3+-doped oxyfluorosilicate glasses and glass-ceramics[J]. Ceram Int, 2018, 44(6): 6104-6114.

    [29] KAWAGUCHI N, MASAI H, AKATSUKA M, et al. Scintillation properties of non-doped and pr-doped BaO-B2O3-SiO2 glasses and glass-ceramics[J]. Sensor Mater, 2021, 33(6): 2215-2226.

    [30] VAN EIJK C W E. Inorganic scintillators in medical imaging detectors[J]. Nucl Instrum Meth A, 2003, 509(1): 17-25.

    [31] JOHNSON J A, SCHWEIZER S, HENKE B, et al. Eu-activated fluorochlorozirconate glass-ceramic scintillators[J]. J Appl Phys, 2006, 100(3): 034701.

    [32] SCHWEIZER S, HENKE B, KNEKE S, et al. Energy-dependent scintillation intensity of fluorozirconate-based glass-ceramic x-ray detectors[C] //Medical Imaging 2006: Physics of Medical Imaging. International Society for Optics and Photonics, 2006, 6142: 61422Y.

    [33] CHEN G, JOHNSON J, WEBER R, et al. Fluorozirconate-based nanophase glass ceramics for high-resolution medical X-ray imaging[J]. J Non-Cryst Solids, 2006, 352(6/7): 610-614.

    [34] CHEN G, JOHNSON J, SCHWEIZER S, et al. Transparent BaCl2:Eu2+ glass-ceramic scintillator[C] //Medical Imaging 2006: Physics of Medical Imaging. International Society for Optics and Photonics, 2006, 6142: 61422X.

    [35] SCHWEIZER S, JOHNSON J A. Fluorozirconate-based glass ceramic X-ray detectors for digital radiography[J]. Radiat Meas, 2007, 42(4): 632-637.

    [36] FU J, KOBAYASHI M, SUGIMOTO S, et al. Scintillation from Eu2+ in nanocrystallized glass[J]. J Am Ceram Soc, 2009, 92(9): 2119-2121.

    [38] NAKAUCHI D. Photo-, radio- and thermo- luminescence properties of Eu-doped BaSi2O5 glass-ceramics[J]. Optik, 2019, 185: 812-818.

    [40] LEE G, SAVAGE N, WAGNER B, et al. Synthesis and luminescence properties of transparent nanocrystalline GdF3:Tb glass-ceramic scintillator[J]. J Lumin, 2014, 147: 363-366.

    [41] OKADA G, SHINOZAKI K, KOMATSU T, et al. Tb3+-doped BaF2-Al2O3-B2O3 glass and glass-ceramic for radiation measurements[J]. J Non-Cryst Solids, 2018, 501: 111-115.

    [42] PAN Z, JAMES K, CUI Y, et al. Terbium-activated lithium-lanthanum-aluminosilicate oxyfluoride scintillating glass and glass-ceramic[J]. Nucl Instrum Meth A, 2008, 594(2): 215-219.

    [44] GU M, GAO Q-C, HUANG S-M, et al. Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals[J]. J Lumin, 2012, 132(10): 2531-2536.

    [45] NOVOTNY R W, BRINKMANN K-T, BORISEVICH A, et al. Study of the New Glass and Glass Ceramic Stoichiometric and Gd3+-loaded BaO*2SiO2(DSB:Ce) Scintillation Material for Future Calorimetry[J]. J Phys: Conf Ser, 2017, 928: 012034.

    [46] NOVOTNY R W, BRINKMANN K-T, DORMENEV V, et al. Performance of DSB - a new glass and glass ceramic as scintillation material for future calorimetry[J]. J Phys: Conf Ser, 2019, 1162: 012023.

    [47] RAHIMI M, ZAHEDIFAR M, AZIMIRAD R, et al. Luminescence and scintillation properties of Eu2+ doped CaF2 glass ceramics for radiation spectroscopy[J]. J Lumin, 2020, 221: 117040.

    [48] CHEWPRADITKUL W, HE X, CHEN D, et al. Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration[J]. Phys Status Solidi (a), 2011, 208(12): 2830-2832.

    [49] HAN C, BARTA M, DORN M, et al. Transparent oxyhalide glass and glass ceramics for gamma-ray detection[C] //Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIII. International Society for Optics and Photonics, 2011, 8142: 81420R.

    [50] HUANG S, GAO Q, GU M. Enhanced luminescence in transparent glass ceramics containing BaYF5:Ce3+ nanocrystals[J]. J Lumin, 2012, 132(3): 750-754.

    [51] NIKITIN A, FEDOROV A, KORJIK M. Novel glass ceramic scintillator for detection of slow neutrons in well logging applications[J]. IEEE T Nucl Sci, 2013, 60(2): 1044-1048.

    [52] DU Y, HAN S, ZOU Y, et al. Luminescence properties of Ce3+-doped oxyfluoride aluminosilicate glass and glass ceramics[J]. Opt Mater, 2019, 89: 243-249.

    [53] SUN B, XIE Y, ZHAO Y, et al. A highly robust Ce3+-doped and Gd3+-mixed KLaF4 nano-glass composite scintillator[J]. J Mater Chem C, 2021, 9(48): 17504-17510.

    [54] SUN X-Y, YE Z-P, WU Y-T, et al. A simple and highly efficient method for synthesis of Ce3+-activated borogermanate scintillating glasses in air[J]. J Am Ceram Soc, 2014, 97(11): 3388-3391.

    [55] SUN X-Y, XIAO Z-H, WU Y-T, et al. Fast Ce3+-activated borosilicate glass scintillators prepared in air atmosphere[J]. Ceram Int, 2017, 43(3): 3401-3404.

    [56] LIU P, LV S, CHEN X, et al. Crystallization control toward colorless cerium-doped scintillating glass[J]. Opt Express, 2018, 26(16): 20582-20589.

    [57] POLOSAN S. Characterization of BGO glass-ceramic materials[J]. J Non-Cryst Solids, 2009, 355(37-42): 1900-1903.

    [58] SHI Z, LV S, TANG G, et al. Multiphase transition toward colorless bismuth-germanate scintillating glass and fiber for radiation detection[J]. ACS Appl Mater Inter, 2020, 12(15): 17752-17759.

    [59] LV S, CAO M, LI C, et al. In-situ phase transition control in the supercooled state for robust active glass fiber[J]. ACS Appl Mater Inter, 2017, 9(24): 20664-20670.

    [60] YANAGIDA T, MASAI H, OKADA G, et al. Optical and scintillation properties of 30BaO-(70-x)TiO2-xGeO2 (x= 50, 55, 60) glass-ceramics[J]. J Non-Cryst Solids, 2018, 501: 106-110.

    [61] MASAI H, OKADA G, KAWAGUCHI N, et al. Photoluminescence and X-ray-induced scintillation of BaO-TiO2-SiO2 glasses and the glass-ceramics[J]. J Non-Cryst Solids, 2018, 501: 131-135.

    [62] KATO T, OKADA G, KAWAGUCHI N, et al. Scintillation properties of BaO-TiO2-GeO2-SiO2 glass-ceramics[J]. J Non-Cryst Solids, 2018, 501: 116-120.

    [63] KAWAGUCHI N, MASAI H, KIMURA H, et al.Scintillation and thermoluminescence properties of transparent glass-ceramics containing Sr0.5Ba0.5Nb2O6 nanocrystallites[J]. J Non-Cryst Solids, 2018, 501: 126-130.

    [64] USUI Y, OKADA G, KAWAGUCHI N, et al. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics[J]. Jpn J Appl Phys, 2018, 57(4): 046203.

    [65] LIN L, LV S, XIE W, et al. Nanostructured glass composite for self‐calibrated radiation dose rate detection[J]. Adv Opt Mater, 2021: 2100751.

    [66] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Lett, 2015, 15(6): 3692-3696.

    [67] PATTON G, MORETTI F, BELSKY A, et al. Light yield sensitization by X-ray irradiation of the BaAl4O7:Eu2+ ceramic scintillator obtained by full crystallization of glass[J]. Phys Chem Chem Phys, 2014, 16(45): 24824-24829.

    [68] BARTA M B, NADLER J H, KANG Z, et al. Composition optimization of scintillating rare-earth nanocrystals in oxide glass-ceramics for radiation spectroscopy[J]. Appl Opt, 2014, 53(16): D21-D28.

    [69] DAI W, MARCACCI H, LYNCH B, et al. Rare-earth activated glass and glass-ceramic for neutron detection[J]. MRS Online Proceed Library (OPL), 2012, 1471: 1-6.

    [70] CHEN Q, WU J, OU X, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93.

    [71] WEI Y, CHENG Z, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chem Soc Rev, 2019, 48(1): 310-350.

    [72] WANG X, BAO Z, CHANG Y-C, et al. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes[J]. ACS Energy Lett, 2020, 5(11): 3374-3396.

    [73] AI B, LIU C, WANG J, et al. Precipitation and optical properties of cspbbr3 quantum dots in phosphate glasses[J]. J Am Ceram Soc, 2016, 99(9): 2875-2877.

    [74] LI P, XIE W, MAO W, et al. A new whole family perovskites quantum dots (CsPbX3, X=Cl, Br, I) phosphate glasses with full spectral emissions[J]. J Alloy Compd, 2020, 817: 153338.

    [75] LIU X, MEI E, LIU Z, et al. Stable, Low-threshold amplification spontaneous emission of blue-emitting CsPbCl2Br perovskite nanocrystals glasses with controlled crystallization[J]. ACS Photon, 2021, 8(3): 887-893.

    [76] YANG C, ZHUANG B, LIN J, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display[J]. Chem Eng J 2020, 398: 125616.

    [77] EROL E, KIBRISLI O, ELIKBILEK ERSUNDU M, et al. Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites[J]. Chem Eng J, 2020, 401: 126053.

    [78] WANG C, LIN H, ZHANG Z, et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime[J]. J Eur Ceram Soc, 2020, 40(5): 2234-2238.

    [79] KAWANO N, SHINOZAKI K, NAKAUCHI D, et al. Scintillation properties of organic-inorganic layered perovskite nanocrystals in glass[J]. J Appl Phys, 2020, 127(21): 213103.

    [80] MA W, JIANG T, YANG Z, et al. Highly resolved and robust dynamic X-Ray imaging using perovskite glass‐ceramic scintillator with reduced light scattering[J]. Adv Sci, 2021, 8(15): 2003728.

    [81] XU Y, ZHAO X, XIA M, et al. Perovskite nanocrystal doped all-inorganic glass for X-ray scintillators[J]. J Mater Chem C, 2021, 9(16): 5452-5459.

    [82] NIU L, WANG S, SUI Z, et al. Highly stable CsPbBr3 perovskite quantum dot-doped tellurite glass nanocomposite scintillator[J]. Opt Lett, 2021, 46(14): 3448.

    [83] WANG C L, GOU L, ZALESKI J M, et al. ZnS quantum dot based nanocomposite scintillators for thermal neutron detection[J]. Nucl Instrum Meth A, 2010, 622(1): 186-190.

    [84] JAGTAP S, CHOPADE P, TADEPALLI S, et al. A review on the progress of ZnSe as inorganic scintillator[J]. Opto-Electron Rev, 2019, 27(1): 90-103.

    [85] LIU C, LI Z, HAJAGOS T J, et al. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation[J]. ACS Nano, 2017, 11(6): 6422-6430.

    [86] TAM A K, BOYRAZ O, UNANGST J, et al. Quantum-dot doped polymeric scintillation material for radiation detection[J]. Radiat Meas, 2018, 111: 27-34.

    [87] WHITTAKER C, GIROUX J, LARIVIERE D, et al. Colloidal quantum dot-doped optical fibers for scintillation dosimetry[J]. IEEE T

    [88] LI X, FAN C, LI J, et al. Highly crystallized transparent luminescent glass ceramics containing dual-phase ZnGa2O4 spinel and α-Zn2SiO4 willemite nanocrystals[J]. J Eur Ceram Soc, 2021, 41(2): 1550-1556.

    [89] BERTRAND A, CARREAUD J, CHENU S, et al. Scalable and formable tellurite-based transparent ceramics for near infrared applications[J]. Adv Opt Mater, 2016, 4(10): 1482-1486.

    SUN Bochao, SUI Zexuan, WANG Ci, ZHAO Lei, GAO Zhigang, REN Jing. Nano-Glass Composite Scintillators: Opportunities and Challenges[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1143
    Download Citation