• Chinese Journal of Lasers
  • Vol. 52, Issue 4, 0402408 (2025)
Qulong Wei, Lihong Jiang*, Zheng Liu, Mingjie Zhao..., Guangang Wang and Zhenghua Guo|Show fewer author(s)
Author Affiliations
  • School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi ,China
  • show less
    DOI: 10.3788/CJL240987 Cite this Article Set citation alerts
    Qulong Wei, Lihong Jiang, Zheng Liu, Mingjie Zhao, Guangang Wang, Zhenghua Guo. Microstructure and Mechanical Properties of Graded Lattice Structures Formed via Selective Laser Melting Forming[J]. Chinese Journal of Lasers, 2025, 52(4): 0402408 Copy Citation Text show less
    SEM morphology and particle size distribution of Ti-6Al-4V powder. (a) Powder morphology; (b) powder size distribution;
    Fig. 1. SEM morphology and particle size distribution of Ti-6Al-4V powder. (a) Powder morphology; (b) powder size distribution;
    Three-dimensional model of BCC lattice structures. (a) BCC gradient cell is transitioned continuously at the junction; (b) ZL-BCC-A; (c) ZL-BCC-B; (d) ZL-BCC-C; (e) ZC-BCC; (f) HD-BCC
    Fig. 2. Three-dimensional model of BCC lattice structures. (a) BCC gradient cell is transitioned continuously at the junction; (b) ZL-BCC-A; (c) ZL-BCC-B; (d) ZL-BCC-C; (e) ZC-BCC; (f) HD-BCC
    Three-dimensional model of FCC lattice structures. (a) FCC gradient cell is transitioned continuously at the junction; (b) ZL-FCC-A; (c) ZL-FCC-B; (d) ZL-FCC-C; (e) ZC-FCC; (f) HD-FCC
    Fig. 3. Three-dimensional model of FCC lattice structures. (a) FCC gradient cell is transitioned continuously at the junction; (b) ZL-FCC-A; (c) ZL-FCC-B; (d) ZL-FCC-C; (e) ZC-FCC; (f) HD-FCC
    Forming simulation of linear gradient lattice structures. (a) Forming stress in BCC structure; (b) deformation in BCC structure along forming direction; (c) forming stress in FCC structure; (d) deformation in FCC structure along forming direction
    Fig. 4. Forming simulation of linear gradient lattice structures. (a) Forming stress in BCC structure; (b) deformation in BCC structure along forming direction; (c) forming stress in FCC structure; (d) deformation in FCC structure along forming direction
    SLM formed gradient lattice structures. (a) BCC-XY plane; (b) FCC-XY plane; (c) BCC-XZ plane; (d) FCC-XZ plane
    Fig. 5. SLM formed gradient lattice structures. (a) BCC-XY plane; (b) FCC-XY plane; (c) BCC-XZ plane; (d) FCC-XZ plane
    Microstructures at lattice beam. (a)‒(b) Microstructures of cross section; (c)‒(d) microstructures of longitudinal section
    Fig. 6. Microstructures at lattice beam. (a)‒(b) Microstructures of cross section; (c)‒(d) microstructures of longitudinal section
    EBSD orientation diagrams at lattice node (IPF: inverse pole figure). (a) IPF-X; (b) IPF-Y; (c) IPF-Z; (d) reconstruction of β-phase IPF-Z
    Fig. 7. EBSD orientation diagrams at lattice node (IPF: inverse pole figure). (a) IPF-X; (b) IPF-Y; (c) IPF-Z; (d) reconstruction of β-phase IPF-Z
    EBSD orientation diagrams at the lattice beam. (a) IPF-X; (b) IPF-Y; (c) IPF-Z; (d) reconstruction of β-phase IPF-Z
    Fig. 8. EBSD orientation diagrams at the lattice beam. (a) IPF-X; (b) IPF-Y; (c) IPF-Z; (d) reconstruction of β-phase IPF-Z
    Lattice structure defects. (a) Surface coated with powder; (b) unmelted powder; (c) lack of fusion; (d) hole
    Fig. 9. Lattice structure defects. (a) Surface coated with powder; (b) unmelted powder; (c) lack of fusion; (d) hole
    Micro-CT analysis showing relative density of the lattice structure. (a) X-Z plane; (b) X-Y plane; (c) defect distribution
    Fig. 10. Micro-CT analysis showing relative density of the lattice structure. (a) X-Z plane; (b) X-Y plane; (c) defect distribution
    Stress-strain curves of gradient lattice structures. (a) BCC structures; (b) FCC structures
    Fig. 11. Stress-strain curves of gradient lattice structures. (a) BCC structures; (b) FCC structures
    Static compression macroscopic morphology. (a) HD-BCC-∅1; (b) ZL-BCC-A; (c) ZL-BCC-B; (d) ZL-BCC-C; (e) ZC-BCC; (f) HD-FCC-∅1; (g) ZL-FCC-A; (h) ZL-FCC-B; (i) ZL-FCC-C; (j) ZC-FCC
    Fig. 12. Static compression macroscopic morphology. (a) HD-BCC-∅1; (b) ZL-BCC-A; (c) ZL-BCC-B; (d) ZL-BCC-C; (e) ZC-BCC; (f) HD-FCC-∅1; (g) ZL-FCC-A; (h) ZL-FCC-B; (i) ZL-FCC-C; (j) ZC-FCC
    Force analysis and numerical simulation of BCC lattice structures. (a)‒(c) Force analysis of cell unit; (d) ZL-BCC-A numerical simulation; (e)‒(f) HD-BCC-∅1 numerical simulation; (g)‒(h) ZL-BCC-C numerical simulation
    Fig. 13. Force analysis and numerical simulation of BCC lattice structures. (a)‒(c) Force analysis of cell unit; (d) ZL-BCC-A numerical simulation; (e)‒(f) HD-BCC-∅1 numerical simulation; (g)‒(h) ZL-BCC-C numerical simulation
    Force analysis and numerical simulation of FCC lattice structures. (a)‒(b) Force analysis of cell unit; (c) ZL-FCC-A numerical simulation; (d)‒(e) HD-FCC-∅1 numerical simulation; (f)‒(g) ZL-FCC-C numerical simulation
    Fig. 14. Force analysis and numerical simulation of FCC lattice structures. (a)‒(b) Force analysis of cell unit; (c) ZL-FCC-A numerical simulation; (d)‒(e) HD-FCC-∅1 numerical simulation; (f)‒(g) ZL-FCC-C numerical simulation
    Young's modulus of the cell units with different rod diameters
    Fig. 15. Young's modulus of the cell units with different rod diameters
    Energy absorption curves of BCC and FCC structures. (a) BCC structures; (b) FCC structures
    Fig. 16. Energy absorption curves of BCC and FCC structures. (a) BCC structures; (b) FCC structures
    Energy absorption efficiency curves of BCC and FCC structures. (a) BCC structures; (b) FCC structures
    Fig. 17. Energy absorption efficiency curves of BCC and FCC structures. (a) BCC structures; (b) FCC structures
    ElementMass fraction /%
    TiBal.
    Fe0.034
    Al6.19
    V4.1
    C0.017
    H0.002
    O0.098
    N0.006
    Table 1. Chemical composition of Ti-6Al-4V powder
    TypeRoughness Ra /μmSize /(mm×mm×mm)Shank diameter /mm
    ZL-BCC-A-17.60512.33×12.27×21.551.00
    ZL-BCC-A-27.85512.33×12.29×21.551.01
    ZL-BCC-A-37.74312.36×12.32×21.481.01
    ZL-BCC-B-17.95512.32×12.28×21.430.63
    ZL-BCC-B-27.65312.33×12.39×21.420.64
    ZL-BCC-B-37.8341.37×12.36×21.450.65
    ZL-BCC-C-18.21612.28×12.22×21.550.73
    ZL-BCC-C-27.56212.30×12.25×21.630.75
    ZL-BCC-C-37.95812.27×12.35×21.580.72
    ZC-BCC-17.67412.34×12.19×21.380.82
    ZC-BCC-27.59812.30×12.29×21.470.81
    ZC-BCC-37.63512.27×12.33×21.350.81
    HD-BCC-17.46312.33×12.28×21.420.52
    HD-BCC-27.59812.35×12.38×21.470.53
    HD-BCC-37.42512.33×12.37×21.390.54
    ZL-FCC-A-17.93512.33×12.35×21.640.54
    ZL-FCC-A-27.85912.35×12.28×21.570.56
    ZL-FCC-A-37.49712.29×12.34×21.490.53
    ZL-FCC-B-17.86412.27×12.33×21.241.02
    ZL-FCC-B-27.79512.37×12.35×21.431.01
    ZL-FCC-B-37.88612.29×12.32×21.391.03
    ZL-FCC-C-18.25412.27×12.38×21.540.72
    ZL-FCC-C-28.32512.35×12.29×21.480.70
    ZL-FCC-C-38.29812.28×12.36×21.490.71
    ZC-FCC-17.57212.24×12.38×21.470.85
    ZC-FCC-27.45812.36×12.27×21.520.87
    ZC-FCC-37.61512.31×12.26×21.550.84
    HD-FCC-16.85112.35×12.38×21.580.93
    HD-FCC-27.86012.25×12.29×21.480.92
    HD-FCC-37.25812.34×12.31×21.540.93
    Table 2. Roughness and size measurement of formed samples
    Qulong Wei, Lihong Jiang, Zheng Liu, Mingjie Zhao, Guangang Wang, Zhenghua Guo. Microstructure and Mechanical Properties of Graded Lattice Structures Formed via Selective Laser Melting Forming[J]. Chinese Journal of Lasers, 2025, 52(4): 0402408
    Download Citation