[1] T JOCHUM, A FASTNACHT, S E TURMBORE et al. Direct Raman spectroscopic measurements of biological nitrogen fixation under natural conditions: an analytical approach for studying nitrogenase activity. Analytical Chemistry, 89, 1117-1122(2017).
[2] V SANDFORT, J GOLDSCHMIDT, J WOELLENSTEIN et al. Cavity-enhanced Raman spectroscopy for food chain management. Sensors, 18, 709(2018).
[3] Pinyi WANG, Weigen CHEN, Jianxin WANG et al. Cavity-enhanced Raman spectroscopy for detection of trace gaseous impurities in hydrogen for fuel cells. Analytical Chemistry, 95, 6894-6904(2023).
[4] Ying ZHANG, Tianlong ZHANG, Hua LI. Application of Laser-Induced Breakdown Spectroscopy (LIBS) in environmental monitoring. Spectrochimica Acta Part B-Atomic Spectroscopy, 181, 106218(2021).
[5] Yuan GAO, Leizi JIAO, Fu JIAO et al. Non-intrusive prediction of fruit spoilage and storage time via detecting volatiles in sealed packaging using laser spectroscopy. Lwt-Food Science and Technology, 155, 112930(2022).
[6] G GENOUD, J LEHMUSKOSKI, S BELL et al. Laser spectroscopy for monitoring of radiocarbon in atmospheric samples. Analytical Chemistry, 91, 12315-12320(2019).
[7] J G NIKITA, M WASONO, M SATRIAWAN et al. CO2 Laser photoacoustic spectrometer for measuring ethylene, acetone, and ammonia in the breath of patients with renal disease. Sensing and Bio-Sensing Research, 30, 100387(2020).
[8] C V RAMAN, K S KRISHNAN. A new type of secondary radiation. Nature, 121, 501-502(1928).
[9] W R FENNER, H A HYATT, J M KELLAM et al. Raman cross-section of some simple gases. Journal of the Optical Society of America, 63, 73-77(1973).
[10] W K BISCHEL, G BLACK. Wavelength dependence of Raman-scattering cross-section from 200-600 nm. In Excimer Lasers, 181-187(1983).
[11] Qingying YANG, Yan TAN, Zihan QU et al. Multiple gas detection by cavity-enhanced Raman spectroscopy with sub-ppm sensitivity. Analytical Chemistry, 95, 5652-5660(2023).
[12] M HIPPLER. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback cw-diode lasers. Analytical Chemistry, 87, 7803-7809(2015).
[13] R SALTER, J CHU, M HIPPLER. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy. Analyst, 137, 4669-4676(2012).
[14] Pinyi WANG, Weigen CHEN, Fu WAN et al. A review of cavity-enhanced Raman spectroscopy as a gas sensing method. Applied Spectroscopy Reviews, 55, 393-417(2020).
[15] Jin HU, Fu WAN, Pinyi WANG et al. Application of frequency-locking cavity-enhanced spectroscopy for highly sensitive gas sensing: a review. Applied Spectroscopy Reviews, 57, 378-410(2022).
[16] Min YANG, Zhen WANG, Qinxue NIE et al. Mid-infrared cavity-enhanced absorption sensor for ppb-level N2O detection using an injection-current-modulated quantum cascade laser. Optics Express, 29, 41634-41642(2021).
[18] Jianfei TIAN, Gang ZHAO, A J FLEISHER et al. Optical feedback linear cavity enhanced absorption spectroscopy. Optics Express, 29, 26831-26840(2021).
[19] Tong CHENG, Tianyue YANG, Ting GONG et al. Interference suppression method in optical feedback-cavity enhanced absorption spectroscopy technology. Acta Physica Sinica, 71, 353-358(2022).
[20] E D BLACK. An introduction to pound-drever-hall laser frequency stabilization. American Journal of Physics, 69, 79-87(2001).
[21] Hu GE, Weiping KONG, Rui WANG et al. Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing. Optics Letters, 48, 2186-2189(2023).
[22] K M MANFRED, L CIAFFONI, G A D RITCHIE. Optical-feedback cavity-enhanced absorption spectroscopy in a linear cavity : model and experiments. Applied Physics B-Lasers and Optics, 120, 329-339(2015).
[23] T FROSCH, R KEINER, B MICHALZIK et al. Investigation of gas exchange processes in peat bog ecosystems by means of innovative Raman gas spectroscopy. Analytical Chemistry, 85, 1295-1299(2013).
[24] Pinyi WANG, Weigen CHEN, Fu WAN et al. Cavity-enhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing. Optics Express, 27, 33311-33324(2019).
[25] S I OHSHIMA, H SCHNATZ. Optimization of injection current and feedback phase of an optically self-locked laser diode. Journal of Applied Physics, 71, 3114-3117(1992).
[26] N N YANG, B FANG, W X ZHAO et al. Optical-feedback cavityenhanced absorption spectroscopy for OH radical detection at 2.8 lm using a DFB diode laser. Optics Express, 30, 15238-15249(2022).
[27] S G BARAN, G HANCOCK, R PEVERALL et al. Optical feedback cavity enhanced absorption spectroscopy with diode lasers. Analyst, 134, 243-249(2009).
[28] J C HABIG, J NADOLNY, J MEINEN et al. Optical feedback cavity enhanced absorption spectroscopy: Effective adjustment of the feedback-phase. Applied Physics B, 106, 491-499(2012).
[29] H LI, N B ABRAHAM. Analysis of the noise spectra of a laser diode withoptical feedback from a high-finesse resonator. IEEE Journal of Quantum Electronics, 25, 1782-1793(1989).
[30] K K LEHMANN, D ROMANINI. The superposition principle and cavity ring-down spectroscopy. The Journal of Chemical Physics, 105, 10263-10277(1996).