• High Power Laser and Particle Beams
  • Vol. 34, Issue 1, 011002 (2022)
Yanji Hong, Chentao Mao, and Xiaohui Feng
Author Affiliations
  • State Key Laboratory of Laser Propulsion & Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
  • show less
    DOI: 10.11884/HPLPB202234.210275 Cite this Article
    Yanji Hong, Chentao Mao, Xiaohui Feng. Status and progress of pulsed laser ablation propulsion technology in the field of aerospace[J]. High Power Laser and Particle Beams, 2022, 34(1): 011002 Copy Citation Text show less
    Laser ablation impulse generation
    Fig. 1. Laser ablation impulse generation
    Schematic diagram of the parabolic reflector
    Fig. 2. Schematic diagram of the parabolic reflector
    Schematic diagram of the lightcraft vehicle
    Fig. 3. Schematic diagram of the lightcraft vehicle
    The aerospace laser propulsion engine
    Fig. 4. The aerospace laser propulsion engine
    Laser ablation propelled spherical flyer
    Fig. 5. Laser ablation propelled spherical flyer
    Single stage to orbit launch vehicle
    Fig. 6. Single stage to orbit launch vehicle
    Launch a flyer from LEO into a Hohmann transfer orbit touching Mars
    Fig. 7. Launch a flyer from LEO into a Hohmann transfer orbit touching Mars
    Progressive orbits to GEO or interplanetary flight
    Fig. 8. Progressive orbits to GEO or interplanetary flight
    Operating principles of the nanosecond and millisecond versions of the laser plasma thrusters
    Fig. 9. Operating principles of the nanosecond and millisecond versions of the laser plasma thrusters
    Laser ablation propulsion of gas, liquid and solid propellant
    Fig. 10. Laser ablation propulsion of gas, liquid and solid propellant
    Laser-electrostatic hybrid thruster
    Fig. 11. Laser-electrostatic hybrid thruster
    Cylindrical laser electromagnetic hybrid thruster
    Fig. 12. Cylindrical laser electromagnetic hybrid thruster
    Rectangular laser electromagnetic hybrid thruster
    Fig. 13. Rectangular laser electromagnetic hybrid thruster
    Laser ablation manipulation model of focusing a laser beam to irradiate whole body of debris
    Fig. 14. Laser ablation manipulation model of focusing a laser beam to irradiate whole body of debris
    Laser ablation manipulation model of focusing a laser beam to irradiate a point of debris’ surface
    Fig. 15. Laser ablation manipulation model of focusing a laser beam to irradiate a point of debris’ surface
    Change of orbit parameters of circular orbital reverse flying debris
    Fig. 16. Change of orbit parameters of circular orbital reverse flying debris
    Change of semi-major axis of non-coplanar circular orbital reverse flying debris
    Fig. 17. Change of semi-major axis of non-coplanar circular orbital reverse flying debris
    Change of eccentricity of non-coplanar circular orbital reverse flying debris
    Fig. 18. Change of eccentricity of non-coplanar circular orbital reverse flying debris
    Change of inclination of non-coplanar circular orbital reverse flying debris
    Fig. 19. Change of inclination of non-coplanar circular orbital reverse flying debris
    Change of position vector’s modulus of non-coplanar circular orbital reverse flying debris with repetitive pulsed laser
    Fig. 20. Change of position vector’s modulus of non-coplanar circular orbital reverse flying debris with repetitive pulsed laser
    Change of inclination and right ascension of the ascending node of non-coplanar circular orbital reverse flying debris with repetitive pulsed laser
    Fig. 21. Change of inclination and right ascension of the ascending node of non-coplanar circular orbital reverse flying debris with repetitive pulsed laser
    Change of angular velocity of debris in volume 40 cm×50 cm×60 cm碎片尺寸为40 cm/50 cm/60 cm下碎片角速度的变化
    Fig. 22. Change of angular velocity of debris in volume 40 cm×50 cm×60 cm碎片尺寸为40 cm/50 cm/60 cm下碎片角速度的变化
    Change of angular velocity of debris in volume 40 cm×50 cm×60 cm碎片尺寸为40 cm/50 cm/60 cm下碎片角速度的变化
    Fig. 23. Change of angular velocity of debris in volume 40 cm×50 cm×60 cm碎片尺寸为40 cm/50 cm/60 cm下碎片角速度的变化
    Change of angular velocity of debris in volume 40 cm×50 cm×60 cm碎片尺寸为40 cm/50 cm/60 cm下碎片角速度的变化
    Fig. 24. Change of angular velocity of debris in volume 40 cm×50 cm×60 cm碎片尺寸为40 cm/50 cm/60 cm下碎片角速度的变化
    Process of laser ablation despinning of debris in volume 40 cm×50 cm×60 cm
    Fig. 25. Process of laser ablation despinning of debris in volume 40 cm×50 cm×60 cm
    Asteroid laser ablation manipulation and the Laser Bees Project
    Fig. 26. Asteroid laser ablation manipulation and the Laser Bees Project
    pulse width/fscoupling coefficient/(N·MW−1energy fluence/(kJ·m−2
    AlPOMAlPOM
    40030±5125±1250±1032±6
    8028±5773±7030±640±8
    Table 1. Propellant material and coupling coefficient
    launch orbittypewavelength/nmpulse duration/pspulse energy/kJpulse repetition rate/Hzlaser average power/MWmirror diameter/mcoupling coefficient/(N/MW)
    single stage to orbitNd:YAG105710051000~30005~156100~150
    from LEO into Mars orbitNd:YAG35510052501.25370
    Table 2. Laser and target parameters
    Yanji Hong, Chentao Mao, Xiaohui Feng. Status and progress of pulsed laser ablation propulsion technology in the field of aerospace[J]. High Power Laser and Particle Beams, 2022, 34(1): 011002
    Download Citation