• High Power Laser and Particle Beams
  • Vol. 35, Issue 1, 012001 (2023)
Yitong Wu1, Liangliang Ji1、*, and Ruxin Li1、2
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
  • show less
    DOI: 10.11884/HPLPB202335.220215 Cite this Article
    Yitong Wu, Liangliang Ji, Ruxin Li. Impact of laser parameters on attainable upper limit of laser intensity in non-ideal vacuum[J]. High Power Laser and Particle Beams, 2023, 35(1): 012001 Copy Citation Text show less
    References

    [1] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 43, 267-270(1979).

    [2] Faure J, Glinec Y, Pukhov A, et al. A laser–plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).

    [3] Geddes C G R, Toth C, Van Tilborg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 431, 538-541(2004).

    [4] Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions[J]. Nature, 431, 535-538(2004).

    [5] Clayton C E, Ralph J E, Albert F, et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 105, 105003(2010).

    [6] Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 122, 084801(2019).

    [7] Chen Min, Sheng Zhengming, Zheng Jun, . Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets[J]. Acta Physica Sinica, 55, 2381-2388(2006).

    [8] Jiang Kangnan, Feng Ke, Ke Lintong, . High-quality laser wakefield electron accelerator[J]. Acta Physica Sinica, 70, 084103(2021).

    [9] Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 9, 724(2018).

    [10] Hegelich B M, Albright B J, Cobble J, et al. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 439, 441-444(2006).

    [11] Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 595, 516-520(2021).

    [12] Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 23, 033109(2016).

    [13] Emma C, Van Tilborg J, Assmann R, et al. Free electron lasers driven by plasma accelerators: status and near-term prospects[J]. High Power Laser Science and Engineering, 9, e57(2021).

    [14] Phuoc K T, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 6, 308-311(2012).

    [15] Clark E L, Grigoriadis A, Petrakis S, et al. High-intensity laser-driven secondary radiation sources using the ZEUS 45 TW laser system at the Institute of Plasma Physics and Lasers of the Hellenic Mediterranean University Research Centre[J]. High Power Laser Science and Engineering, 9, e53(2021).

    [16] Nie Zan, Pai C H, Zhang Jie, et al. Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses[J]. Nature Communications, 11, 2787(2020).

    [17] Zhang Meng, Chu Yuxi, Zhao Jun, et al. Efficient generation of third harmonics in Yb-doped femtosecond fiber laser via spatial and temporal walk-off compensation[J]. Chinese Optics Letters, 19, 031402(2021).

    [18] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 12, 435-448(2016).

    [19] Tabak M, Hinkel D, Atzeni S, et al. Fast ignition: overview and background[J]. Fusion Science and Technology, 49, 254-277(2006).

    [20] Mima K. Research status of inertial fusion energy[J]. Luo Shan, Ttranslated. Laser & Optoelectronics Progress., 41, 3-11(2004).

    [21] Cristoforetti G, Hüller S, Koester P, et al. Observation and modelling of stimulated Raman scattering driven by an optically smoothed laser beam in experimental conditions relevant for Shock Ignition[J]. High Power Laser Science and Engineering, 9, e60(2021).

    [22] Zhang F, Cai Hongbo, Zhou Weimin, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 16, 810-814(2020).

    [23] Takabe H, Kuramitsu Y. Recent progress of laboratory astrophysics with intense lasers[J]. High Power Laser Science and Engineering, 9, e49(2021).

    [24] Casner A, Caillaud T, Darbon S, et al. LMJ/PETAL laser facility: overview and opportunities for laboratory astrophysics[J]. High Energy Density Physics, 17, 2-11(2015).

    [25] Zhang Jie, Zhao Gang. Introduction to laboratory astrophysics[J]. Physics, 29, 393-396(2000).

    [26] Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 112, 145003(2014).

    [27] Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 8, 031004(2018).

    [28] Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 8, 011020(2018).

    [29] Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 7, 13686(2016).

    [30] Zhu Xinglong, Chen Min, Weng Suming, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 6, eaaz7240(2020).

    [31] Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 4, 014401(2019).

    [32] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).

    [33] Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 8, 630-635(2021).

    [34] Bahk S W, Rousseau P, Planchon T A, et al. Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2)[J]. Applied Physics B, 80, 823-832(2005).

    [35] Bahk S W, Rousseau P, Planchon T A, et al. Generation and characterization of the highest laser intensities (1022 W/cm2)[J]. Optics Letters, 29, 2837-2839(2004).

    [36] Guo Zhen, Yu Lianghong, Wang Jianye, et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system[J]. Optics Express, 26, 26776-26786(2018).

    [37] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, e54(2019).

    [38] Leng Yuxin. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 46, 0100001(2019).

    [39] Zhang Zongxin, Wu Fenxiang, Hu Jiabing, et al. The 1 PW/0.1Hz laser beamline in SULF facility[J]. High Power Laser Science and Engineering, 8, e4(2020).

    [40] Peng Yujie, Xu Yi, Yu Lianghong, et al. Overview and status of station of extreme light toward 100 PW[J]. Reza Kenkyu, 49, 93-96(2021).

    [41] Cartlidge E. Physicists are planning to build lasers so powerful they could rip apart empty space[JOL]. Science, (20180125). https:www.science.gcontentarticlephysicistsareplanningbuildlaserssopowerfultheycouldripapartemptyspace.

    [42] Zamfir V, Tanaka K, Ur C. Extreme light infrastructure nuclear physics (ELI-NP)[J]. Europhysics News, 50, 23-25(2019).

    [43] Grittani G, Lazzarini C, Lenz S, et al. ELIELBA: fundamental science investigations with high power lasers at ELIBeamlines[C]OSA Highbrightness Sources Lightdriven Interactions Congress 2020. Optical Society of America, 2020: JM3A. 20.

    [44] Papadopoulos D N, Zou J P, Le Blanc C, et al. The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 4, e34(2016).

    [45] Musgrave I, Galimberti M, Boyle A, et al. Review of laser diagnostics at the Vulcan laser facility[J]. High Power Laser Science and Engineering, 3, e26(2015).

    [46] American Association for the Advancement of Science. So much more to know…[J]. Science, 309, 78-102(2005).

    [47] Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 101, 200403(2008).

    [48] Kirk J G, Bell A R, Arka I. Pair production in counter-propagating laser beams[J]. Plasma Physics and Controlled Fusion, 51, 085008(2009).

    [49] Fedotov A M, Narozhny N B, Mourou G, et al. Limitations on the attainable intensity of high power lasers[J]. Physical Review Letters, 105, 080402(2010).

    [50] Schwinger J. Particles, sources, fields Vol. 3[M]. Reading: Advanced Book Program, 1998.

    [51] Fedotov A M. Electron-positron pair creation by a strong tightly focused laser field[J]. Laser Physics, 19, 214-221(2009).

    [52] Bulanov S S, Narozhny N B, Mur V D, et al. Electron-positron pair production by electromagnetic pulses[J]. Journal of Experimental and Theoretical Physics, 102, 9-23(2006).

    [53] Wu Yitong, Ji Liangliang, Li Ruxin. On the upper limit of laser intensity attainable in nonideal vacuum[J]. Photonics Research, 9, 541-547(2021).

    [54] Bashmakov V F, Nerush E N, Kostyukov I Y, et al. Effect of laser polarization on quantum electrodynamical cascading[J]. Physics of Plasmas, 21, 013105(2014).

    [55] Tamburini M, Di Piazza A, Keitel C H. Laser-pulse-shape control of seeded QED cascades[J]. Scientific Reports, 7, 5694(2017).

    [56] Sampath A, Tamburini M. Towards realistic simulations of QED cascades: non-ideal laser and electron seeding effects[J]. Physics of Plasmas, 25, 083104(2018).

    [57] Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 8, 8400(2018).

    [58] Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 14, 054401(2011).

    [59] Bulanov S S, Schroeder C B, Esarey E, et al. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses[J]. Physical Review A, 87, 062110(2013).

    [60] Grismayer T, Vranic M, Martins J L, et al. Seeded QED cascades in counterpropagating laser pulses[J]. Physical Review E, 95, 023210(2017).

    [61] Jirka M, Klimo O, Vranic M, et al. QED cascade with 10 PW-class lasers[J]. Scientific Reports, 7, 15302(2017).

    [62] Samsonov A S, Kostyukov I Y, Nerush E N. Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse[J]. Matter and Radiation at Extremes, 6, 034401(2021).

    [63] Hartemann F V, Kerman A K. Classical theory of nonlinear Compton scattering[J]. Physical Review Letters, 76, 624-627(1996).

    [64] Breit G, Wheeler J A. Collision of two light quanta[J]. Physical Review Journals Archive, 46, 1087-1091(1934).

    [65] Reiss H R. Absorption of light by light[J]. Journal of Mathematical Physics, 3, 59-67(1962).

    [66] Nikishov A I, Ritus V I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. I[J]. Soviet Physics JETP, 19, 529-541(1964).

    [67] Baier V N, Katkov V M, Fadin V S. Radiation of relativistic electrons; Izluchenie relyativistskikh elektronov[M]. Moscow: Atomizdat, 1973.

    [68] Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 6, 497-617(1985).

    [69] Pukhov A. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab)[J]. Journal of Plasma Physics, 61, 425-433(1999).

    [70] Pukhov A. Particleincell codes f plasmabased particle acceleration[C]Proceedings of the 2014 CASCERN Accelerat School: Plasma Wake Acceleration. 2016.

    [71] Sokolov I V, Naumova N M, Nees J A. Numerical modeling of radiation-dominated and quantum-electrodynamically strong regimes of laser-plasma interaction[J]. Physics of Plasmas, 18, 093109(2011).

    [72] Zot'ev D B. Critical remarks on Sokolov's equation of the dynamics of a radiating electron[J]. Physics of Plasmas, 23, 093302(2016).

    [73] Wallin E, Gonoskov A, Marklund M. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: real-time synchrotron simulations[J]. Physics of Plasmas, 22, 033117(2015).

    Yitong Wu, Liangliang Ji, Ruxin Li. Impact of laser parameters on attainable upper limit of laser intensity in non-ideal vacuum[J]. High Power Laser and Particle Beams, 2023, 35(1): 012001
    Download Citation