• Infrared Technology
  • Vol. 44, Issue 2, 115 (2022)
Yang REN, Gang QIN, Junbin LI, Jin YANG, Yanhui LI, Chunzhang YANG, and Jincheng KONG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    REN Yang, QIN Gang, LI Junbin, YANG Jin, LI Yanhui, YANG Chunzhang, KONG Jincheng. Characterization and Analysis of Interface Characteristics of InAs/GaSb Type-II Superlattice Materials[J]. Infrared Technology, 2022, 44(2): 115 Copy Citation Text show less
    References

    [1] Chang L L, Saihalasz G A, Esaki L, et al. Spatial separation of carriers in

    [2] Brum J A, Voisin P, Bastard G, et al. Transient photovoltaic effect in

    [3] Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548.

    [4] Hood A, Hoffman D, WEI Y, et al. Capacitance-voltage investigation of high-purity InAs/GaSb superlattice photodiodes[J]. Applied Physics Letters, 2006, 88(5): 052112.

    [5] Hoffman D, Gin A, Wei Y, et al. Negative and positive luminescence in midwavelength infrared InAs-GaSb superlattice photodiodes[J]. IEEE Journal of Quantum Electronics, 2005, 41(12): 1474-1479.

    [6] Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors[J]. Opto-electronics Review, 2006, 14(1): 69-75.

    [7] Christol P, Konczewicz L, Cuminal Y, et al. Electrical properties of short period InAs/GaSb superlattice[J]. Physica Status Solidi(c), 2007, 4(4): 1494-1498.

    [8] Nesher O, Klipstein P C. High-performance IR detectors at SCD present and future[J]. Opto-electronics Review, 2006, 14(1): 59-68.

    [9] Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors [J]. Opto-Electronics Review, 2006, 14(1): 69-75.

    [10] WEI Y J, Razeghi M. Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 085316.

    [11] Luna E, Satpati B, Rodriguez J B, et al. Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2010, 96(2): 021904.

    [12] Sarusi G. QWIP or other alternative for third generation infrared systems[J]. Infrared Physics & Technology, 2003, 44(5): 439-444.

    [13] Thibado P M, Bennett B R, Twigg M E, et al. Origins of interfacial disorder in GaSb/InAs superlattices[J]. Applied Physics Letters, 1995, 67(24): 3578-3580.

    [14] Tahraoui A, Tomasini P, Lassabatere L, et al. Growth and optimization of InAs/GaSb and GaSb/InAs interfaces[J]. Applied Surface Science, 2000, 162: 425-429.

    [15] Schmitz J, Wagner J, Fuchs F, et al. Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecularbeam epitaxy[J]. Journal of Crystal Growth, 1995, 150: 858-862.

    [16] Wagner J, Schmitz J, Herres N, et al. InAs/(GaIn)Sb superlattices for IR optoelectronics: strain optimization by controlled interface formation[J]. Physica E-low-dimensional Systems & Nanostructures, 1998, 2(1): 320-324.

    [17] Satpati B, Rodriguez J B, Trampert A, et al. Interface analysis of InAs/GaSb superlattice grown by MBE[J]. Journal of Crystal Growth, 2007, 301: 889-892.

    [18] Twigg M E , Bennett B R. Influence of interface and buffer layer on the structure of InAs/GaSb superlattices[J]. Applied Physics Letters, 1995, 67(11): 1609-1611.

    [19] Kaspi R, Steinshnider J, Weimer M. As-soak control of the InAs -on-GaSb interface[J]. Journal of Crystal Growth, 2001, 225(2/4): 544-549.

    [20] Jackson E M, Boishin G I, Aifer E H, et al. Arsenic cross-contamination in GaSb/InAs superlattices[J]. Journal of Crystal Growth, 2004, 270(3): 301-308.

    [21] Zborowski J T, Vigliante A, Moss S C, et al. Interface properties of (In,Ga)Sb/InAs heterostructures[J]. Journal of Applied Physics, 1996, 79(11): 8379-8383.

    [22] WANG M W. Study of interface asymmetry in InAs-GaSb hetero-junctions[J]. Journal of Vacuum Science & Technology B, 1995, 13(4): 1689-1693.

    [23] Booker G R, Klipstein P C, Lakrimi M, et al. Growth of InAs/GaSb strained layer superlattices II[J]. Journal of Crystal Growth, 1995, 146(1-4): 495-502.

    [24] Daly M S, Symons D M, Lakrimi M, et al. Interface composition dependence of the band offset in InAs/GaSb[J]. Semiconductor Science and Technology, 1996, 11(5): L823.

    [25] Young M H, Chow D H, Hunter A T, et al. Recent advances in Ga1.xInxSb/InAs superlattice IR detector materials[J]. Applied Surface Science, 1998, 123-124: 395-399.

    [26] Bennett B R, Shanabrook B V, Wagner R J, et al. Interface composition control in InAs/GaSb superlattices[J]. Solid-state Electronics, 1994, 37(4-6): 733-737.

    [27] Chow D H, Miles R H, Hunter A T, et al. Effects of interface stoichiometry on the structural and electronic properties of Ga1 . x InxSb/InAs superlattices[J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-891.

    [29] Rodriguez J B, Christol P, Cerutti L, et al. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection[J]. Journal of Crystal Growth, 2005, 274(1): 6-13.

    [30] Jasik A, Sankowska I, Pier.cinska D, et al. Blueshift of bandgap energy and reduction of non-radiative defect density due to precise control of InAs-on-GaSb interface in type-II InAs/GaSb superlattice[J]. Journal of Applied Physics, 2011, 110(12): 123103.

    [31] Omaggio J P, Meyer J R, Wagner R J, et al. Determination of band gap and effective masses in InAs/Ga1.xInxSb superlattices[J]. Applied Physics Letters, 1992, 61(2): 207-209.

    [32] WANG M W, Collins D A, Mcgill T C, et al. Effect of interface composition and growth order on the mixed anion InAs/GaSb valence band offset[J]. Applied Physics Letters, 1995, 66(22): 2981-2983.

    [33] Haugan H J, Brown G J, Grazulis L, et al. Optimization of InAs/GaSb type-II superlattices for high performance of photodetectors[J]. Physica E: Low-dimensional Systems and Nanostructures, 2004, 20(3-4): 527-530.

    [34] Haugan H J, Elhamri S, Brown G J , et al. Growth optimization for low residual carriers in undoped midinfrared InAs/GaSb superlattices[J]. Journal of Applied Physics, 2008, 104(7): 240.

    [35] Szmulowicz F, Haugan H J, Brown G J, et al. Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation[J]. Physical Review B, 2004, 69(15): 155321.

    REN Yang, QIN Gang, LI Junbin, YANG Jin, LI Yanhui, YANG Chunzhang, KONG Jincheng. Characterization and Analysis of Interface Characteristics of InAs/GaSb Type-II Superlattice Materials[J]. Infrared Technology, 2022, 44(2): 115
    Download Citation