• Optics and Precision Engineering
  • Vol. 22, Issue 6, 1500 (2014)
ZHAO Jian*, SU Yan, ZHAO Yang, and XIA Guo-ming
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20142206.1500 Cite this Article
    ZHAO Jian, SU Yan, ZHAO Yang, XIA Guo-ming. Parameter optimization of drive circuit in silicon resonant accelerometer[J]. Optics and Precision Engineering, 2014, 22(6): 1500 Copy Citation Text show less

    Abstract

    A fast design method for the drive circuit was proposed by combining Genetic Algorithm(GA) with a low frequency model to improve the transient performance of analog drive circuit for a low-power Silicon Resonant Accelerometer(SRA) and to shorten its design cycle. The method decoupled the closed drive circuit model in high and low frequencies to extract a low-frequency model from drive close-loop circuits. Combined the low-frequency model with the GA, an optimization method was proposed to optimize the circuit parameters for meeting the different actual restraints. A simulation model was established in SIMULINK based on one type of micro silicon resonant accelerometer, and the optimal parameters of PI controller with a most start-up speed were obtained under constraint conditions. Finally, a start-up experiment was performed to testify the simulation results. It shows that the start-up time is shorten from previous 0.42 s to 0.19 s and the over-shoot and phase error are less than 50% and 5°, respectively. The difference between the simulation and experiment is less than 5%, which falls within the acceptable range. It proves that the optimization method is correct and effective.
    ZHAO Jian, SU Yan, ZHAO Yang, XIA Guo-ming. Parameter optimization of drive circuit in silicon resonant accelerometer[J]. Optics and Precision Engineering, 2014, 22(6): 1500
    Download Citation