[1] N KESHAVA, J F MUSTARD. Spectral unmixing. IEEE Signal Processing Magazine, 19, 44-57(2002).
[2] 2徐晨光, 张绍泉, 李璠, 等. 高光谱遥感图像光谱加权稀疏解混算法分析和比较[J]. 南昌工程学院学报, 2020, 39(6): 87-93.XUCH G, ZHANGSH Q, LIF, et al. Analysis and comparison of spectral weighted sparse unmixing algorithms of hyperspectral remote sensing images[J]. Journal of Nanchang Institute of Technology, 2020, 39(6): 87-93.(in Chinese)
[3] J W BOARDMAN. Automating spectral unmixing of AVIRIS data using convex geometry concepts, 11-14(1993).
[4] 4张少磊, 付光远, 汪洪桥, 等. 基于向量总变差约束局部光谱解混的高光谱图像超分辨[J]. 光学 精密工程, 2019, 27(12): 2683-2692. doi: 10.3788/ope.20192712.2683ZHANGSH L, FUG Y, WANGH Q, et al. Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution[J]. Opt. Precision Eng., 2019, 27(12): 2683-2692.(in Chinese). doi: 10.3788/ope.20192712.2683
[5] 5张绍泉, 黄志浩, 邓承志, 等. 光谱加权协同稀疏和全变差正则化高光谱图像解混[J]. 电子学报, 2020, 48(12): 2453-2461. doi: 10.3969/j.issn.0372-2112.2020.12.022ZHANGSH Q, HUANGZH H, DENGCH ZH, et al. Spectral reweighted collaborative sparsity and total variation based hyperspectral unmixing method[J]. Acta Electronica Sinica, 2020, 48(12): 2453-2461.(in Chinese). doi: 10.3969/j.issn.0372-2112.2020.12.022
[6] J S BHATT, M V JOSHI. Deep learning in hyperspectral unmixing: a review, 2189-2192(2021).
[7] C LI, J LI, C H SUI et al. Spatial-spectral nonlinear hyperspectral unmixing under complex noise. IEEE Sensors Journal, 22, 4338-4346(2022).
[8] 8贾麒, 廖守亿, 张作宇, 等. 重加权稀疏非负矩阵分解的高光谱解混[J]. 红外与激光工程, 2020, 49(S2): 283-299.JIAQ, LIAOSH Y, ZHANGZ Y, et al. Reweighted sparse nonnegative matrix decomposition for hyperspectral unmixing[J]. Infrared and Laser Engineering, 2020, 49(S2): 283-299.(in Chinese)
[9] 9徐晨光, 邓承志, 朱华生. 近似稀疏约束的多层非负矩阵分解高光谱解混[J]. 红外与激光工程, 2018, 47(11): 265-273. doi: 10.3788/irla201847.1117010XUCH G, DENGCH ZH, ZHUH SH. Approximate sparse regularized multilayer NMF for hyperspectral unmixing[J]. Infrared and Laser Engineering, 2018, 47(11): 265-273.(in Chinese). doi: 10.3788/irla201847.1117010
[10] M D IORDACHE, A PLAZA, J BIOUCAS-DIAS. On the use of spectral libraries to perform sparse unmixing of hyperspectral data. Iceland, 1-4(2010).
[11] P WANG, X SHEN, K NI et al. Hyperspectral sparse unmixing based on multiple dictionary pruning. International Journal of Remote Sensing, 43, 2712-2734(2022).
[12] J M BIOUCAS-DIAS, M A T FIGUEIREDO. Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing. Iceland, 1-4(2010).
[13] M D IORDACHE, J M BIOUCAS-DIAS, A PLAZA. Collaborative sparse regression for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 52, 341-354(2014).
[14] C Y ZHENG, H LI, Q WANG et al. Reweighted sparse regression for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 54, 479-488(2016).
[15] 15李忠伟, 张浩, 王雷全, 等. 融合空谱-梯度特征的深度高光谱图像去噪[J]. 光学 精密工程, 2022, 30(5): 615-629. doi: 10.37188/ope.2021.0485LIZH W, ZHANGH, WANGL Q, et al. Deep hyperspectral image denoising by fusing space spectrum-gradient features[J]. Opt. Precision Eng., 2022, 30(5): 615-629.(in Chinese). doi: 10.37188/ope.2021.0485
[16] C G XU, Z M WU, F LI et al. Spectral-spatial joint sparsity unmixing of hyperspectral images based on framelet transform. Infrared Physics & Technology, 112, 103564(2021).
[17] J RAPIN, J BOBIN, A LARUE et al. NMF with sparse regularizations in transformed domains. SIAM Journal on Imaging Sciences, 7, 2020-2047(2014).
[18] G X ZHANG, Y Y XU, F M FANG. Framelet-based sparse unmixing of hyperspectral images. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 25, 1516-1529(2016).
[19] J F CAI, R H CHAN, Z W SHEN. A framelet-based image inpainting algorithm. Applied and Computational Harmonic Analysis, 24, 131-149(2008).
[20] T X JIANG, T Z HUANG, X L ZHAO et al. Matrix factorization for low-rank tensor completion using framelet prior. Information Sciences, 436/437, 403-417(2018).
[21] R WANG, H C LI, W Z LIAO et al. Double reweighted sparse regression for hyperspectral unmixing, 6986-6989(2016).
[22] 22刘敬, 李青妍, 刘逸. 基于核加权类对准则的高光谱影像特征提取[J]. 光学 精密工程, 2021, 29(6): 1397-1405. doi: 10.37188/OPE.20212906.1397LIUJ, LIQ Y, LIUY. Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion[J]. Opt. Precision Eng., 2021, 29(6): 1397-1405.(in Chinese). doi: 10.37188/OPE.20212906.1397
[23] B RASTI, B KOIRALA, P SCHEUNDERS et al. UnDIP: hyperspectral unmixing using deep image prior. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).