• Acta Photonica Sinica
  • Vol. 48, Issue 11, 1148007 (2019)
REN Jing*, LU Xiao-song, and WANG Peng-fei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20194811.1148007 Cite this Article
    REN Jing, LU Xiao-song, WANG Peng-fei. Research Progress in Fluorescent Chalcogenide Glass Ceramics[J]. Acta Photonica Sinica, 2019, 48(11): 1148007 Copy Citation Text show less
    References

    [1] LIN Chang-gui, RSSEL C, DAI Shi-xun. Chalcogenide glass-ceramics: functional design and crystallization mechanism[J]. Progress in Materials Science, 2018, 93: 1-44.

    [2] LIU Xiao-feng, ZHOU Jia-jia, ZHOU Shi-feng, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Progress in Materials Science, 2018, 97: 38-96.

    [3] HOLAND W, BEALL G H. Glass ceramic technology[M]. John Wiley & Sons, 2012.

    [4] SHIMAKAWA K, BABA T, INAGAKI Y, et al. Crystallization rates of the chalcogenide glasses by heat treatment[J]. Japanese Journal of Applied Physics, 1971, 10: 1116.

    [5] MECHOLSKY J J. Microstructural investigations of a chalcogenide glass ceramic[D]. Washington: Catholic University of America, 1973.

    [6] MA Hong-li, ZHANG Xiang-hua, LUKAS J. Infrared transmitting chalcogenide glass ceramics[J]. Journal of Non-Crystalline Solids, 2003, 317: 270-274.

    [7] FRERICHS R. New optical glasses with good transparency in the infrared[J]. Journal of the Optical Society of America, 1953, 43: 1153-1157.

    [8] ADAM J L, ZHANG Xiang-hua. Chalcogenide glasses: preparation, properties and applications[M]. Woodhead Publishing, 2014.

    [9] HILTON A R, KEMP S. Chalcogenide glasses for infrared optics[M]. McGraw-Hill New York, 2010.

    [10] REISFELD R. In chalcogenide glasses doped by rare-earths-structure and optical-properties[J]. Annales de Chimie-science des Materiaux, 1982, 7: 147-160.

    [11] SOROKINA I T, VODOPYANOV K L. Solid-state mid-infrared laser sources[M]. Springer Science & Business Media, 2003.

    [12] SEZNEC V, MA Hong-li, ZHANG Xiang-hua, et al. Preparation and luminescence of new Nd3+ doped chloro-sulphide glass-ceramics[J].Optical Materials, 2006, 29: 371-376.

    [13] BALDA R, GARCIA R S, FERNANDEZ J, et al. Upconversion luminescence of transparent Er3+-doped chalcohalide glass-ceramics[J].Optical Materials, 2009, 31: 760-764.

    [14] LOZANO B W, ARAUJO C B, LEDEMI Y, et al. Upconversion luminescence in Er3+ doped Ga10Ge25S65 glass and glass-ceramic excited in the near-infrared[J]. Journal of Applied Physics, 2013, 113: 083520.

    [15] GUILLEVIC E, ALLIX M, ZHANG Xiang-hua, et al. Synthesis and characterization of chloro-sulphide glass-ceramics containing neodymium(III) ions[J].Materials Research Bulletin, 2010, 45: 448-455.

    [16] LIN Chang-gui, CALVEZ L, LI Zhuo-bin, et al. Enhanced up-conversion luminescence in Er3+-doped 25GeS2·35Ga2S3·40CsCl chalcogenide glass-ceramics[J].Journal of the American Ceramic Society, 2013, 96: 816-819.

    [17] HUBERT M, CALVEZ L, ZHANG Xiang-hua, et al. Enhanced luminescence in Er3+-doped chalcogenide glass–ceramics based on selenium[J]. Optical Materials, 2013, 35: 2527-2530.

    [18] DAI Shi-xun, LIN Chang-gui, CHEN Fei-fei, et al. Enhanced mid-ir luminescence of Tm3+ ions in Ga2S3 nanocrystals embedded chalcohalide glass ceramics[J]. Journal of Non-Crystalline Solids, 2011, 357: 2302-2305.

    [19] LIN Chang-gui, DAI Shi-xun, LIU Chao, et al. Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glass-ceramics doped with Tm3+[J]. Applied Physics Letters, 2012, 100: 231910.

    [20] RAI V K, ARAUJO C B, LEDEMI Y, et al. Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles[J]. Journal of Applied Physics, 2008, 103: 103526.

    [21] PAN Zheng-da, UEDA A, AGA R, et al. Spectroscopic studies of Er3+ doped Ge-Ga-S glass containing silver nanoparticles[J]. Journal of Non-Crystalline Solids, 2010, 356: 1097-1101.

    [22] WANG Rong-ping, YAN Kun-lun, ZHANG Ming-jie, et al. Chemical environment of rare earth ions in Ge28.125Ga6. 25S65.625 glass-ceramics doped with Dy3+[J]. Applied Physics Letters, 2015, 107: 161901.

    [23] LU Xiao-song, LAI Zhi-qiang, REN Jing, et al. Distribution of Tm3+ and Ni2+ in chalcogenide glass ceramics containing Ga2S3 nanocrystals: influence on photoluminescence properties[J]. Journal of the European Ceramic Society, 2019, 39: 2580-2584.

    [24] VAN V J H, SHERMAN A. The quantum theory of valence[J]. Reviews of Modern Physics, 1935, 7: 167-228.

    [25] TANABE Y, SUGANO S. On the absorption spectra of complex ions Ii[J]. Journal of the Physical Society of Japan, 1954, 9: 766-779.

    [26] SUGANO S. Multiplets of transition-metal ions in crystals[M]. Elsevier, 2012.

    [27] KOEPKE C, WISNIEWSKI K, GRINBERG M, et al. Excited state absorption in the gahnite glass ceramics and its parent glass doped with chromium[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54: 1725-1734.

    [28] REISFELD R, KISILEV A, BUCH A, et al. Transparent glass-ceramics doped by chromium (III): spectroscopic properties and characterization of crystalline phases[J]. Journal of Non-crystalline Solids, 1987, 91: 333-350.

    [29] ZHOU Shi-feng, JIANG Nan, WU Bo, et al. Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials[J]. Advanced Functional Materials, 2009, 19: 2081-2088.

    [30] GAO Zhi-gang, GUO Shu, LU Xiao-song, et al. Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids[J]. Advanced Optical Materials, 2018, 6: 1701407.

    [31] REN Jing, LI Bo, YANG Guang, et al. Broadband near-infrared emission of chromium-doped sulfide glass-ceramics containing Ga2S3 nanocrystals[J]. Optics Letters, 2012, 37: 5043-5045.

    [32] MIROV S B, MOSKALEV I S, VASILYEV S, et al. Frontiers of mid-IR lasers based on transition metal doped chalcogenides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 1-29.

    [33] LU Xiao-song, ZHANG Yin-dong, REN Jing, et al. Chalcogenide glasses with embedded ZnS nanocrystals: potential mid-infrared laser host for divalent transition metal ions[J]. Journal of the American Ceramic Society, 2018, 101: 666-673.

    [34] LU Xiao-song, LAI Zhi-qiang, ZHANG Ru-nan, et al. Ultrabroadband mid-infrared emission from Cr2+-doped infrared transparent chalcogenide glass ceramics embedded with thermally grown ZnS nanorods[J]. Journal of the European Ceramic Society, 2019, 39: 3373-3379.

    [35] LU Xiao-song, ZHANG Ru-nan, ZHANG Yin-dong, et al. Crystal-field engineering of ultrabroadband mid-infrared emission in Co2+-doped nano-chalcogenide glass composites[J]. Journal of the European Ceramic Society, 2020, 40: 103-107.

    [36] BEALL G H, PINCKNEY L R. Nanophase glass-ceramics[J]. Journal of the American Ceramic Society, 1999, 82: 5-16.

    [37] SHIN Y B, HEO J, KIM H S. Modification of the local phonon modes and electron–phonon coupling strengths in Dy3+-doped sulfide glasses for efficient 1.3 μm amplification[J]. Chemical Physics Letters, 2000, 317: 637-641.

    REN Jing, LU Xiao-song, WANG Peng-fei. Research Progress in Fluorescent Chalcogenide Glass Ceramics[J]. Acta Photonica Sinica, 2019, 48(11): 1148007
    Download Citation