• Journal of Atmospheric and Environmental Optics
  • Vol. 15, Issue 6, 461 (2020)
Yiqun LU*, Gan YANG, Yiliang LIU, Yuwei WANG, and Lin WANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2020.06.006 Cite this Article
    LU Yiqun, YANG Gan, LIU Yiliang, WANG Yuwei, WANG Lin. Quantitative Measurement of Highly Oxygenated Organic Molecules in Urban Beijing[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 461 Copy Citation Text show less
    References

    [1] Kaiser J. How dirty air hurts the heart[J]. Science, 2005, 307 (5717): 1858-1859.

    [2] Shiraiwa M, Ueda K, Pozzer A, et al. Aerosol health effects from molecular to global scales[J]. Environmental Science and Technology, 2017, 51 (23): 13545-13567.

    [3] Cheng S, Yang L, Zhou X, et al. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China[J]. Atmospheric Environment, 2011, 45 (27): 4631-4640.

    [4] Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review[J]. Reviews of Geophysics, 2000, 38 (4): 513-543.

    [5] Merikanto J, Spracklen D V, Mann G W, et al. Impact of nucleation on global CCN[J]. Atmospheric Chemistry and Physics, 2009, 9 (21): 8601-8616.

    [6] Makkonen R, Asmi A, Kerminen V M, et al. Air pollution control and decreasing new particle formation lead to strong climate warming[J]. Atmospheric Chemistry and Physics, 2012, 12 (3): 1515-1524.

    [7] Jimenez J L, Canagaratna M R, Donahue N M, et al. Evolution of organic aerosols in the atmosphere[J]. Science, 2009, 326 (5959): 1525-1529.

    [8] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues[J]. Atmospheric Chemistry and Physics, 2009, 9 (14): 5155-5236.

    [9] Donahue N M, Robinson A L, Pandis S N. Atmospheric organic particulate matter: From smoke to secondary organic aerosol[J]. Atmospheric Environment, 2009, 43 (1): 94-106.

    [10] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506 (7489): 476-479.

    [11] Ma P K, Zhao Y, Robinson A L, et al. Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA[J]. Atmospheric Chemistry and Physics, 2017, 17 (15): 9237-9259.

    [12] Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103 (3): 4605-4638.

    [13] Bianchi F, Kurtén T, Riva M, et al. Highly oxygenated molecules (HOM) from gas-phase autoxidation involving organic peroxy radicals: A key contributor to atmospheric aerosol[J]. Chemical Reviews, 2019, 119: 3472-3509.

    [14] Jokinen T, Berndt T, Makkonen R, et al. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications[J]. Proceedings of the National Academy of Sciences, 2015, 112 (23): 7123-7128.

    [15] Bianchi F, Trostl J, Junninen H, et al. New particle formation in the free troposphere: A question of chemistry and timing[J]. Science, 2016, 352 (6289): 1109-1112.

    [16] Trstl J, Chuang W K, Gordon H, et al. The role of low-volatility organic compounds in initial particle growth in the atmosphere[J]. Nature, 2016, 533 (7604): 527-531.

    [17] Schobesberger S, Junninen H, Bianchi F, et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (43): 17223-17228.

    [18] Jokinen T, Sipil M, Richters S, et al. Rapid autoxidation forms highly oxidized RO2 radicals in the atmosphere[J]. Angewandte Chemie International Edition, 2014, 53: 14596-14600.

    [19] Berndt T, Richters S, Jokinen T, et al. Hydroxyl radical-induced formation of highly oxidized organic compounds[J]. Nature Communications, 2016, 7: 13677.

    [20] Berndt T, Herrmann H, Sipil M, et al. Highly oxidized second-generation products from the gas-phase reaction of OH radicals with isoprene[J]. The Journal of Physical Chemistry A, 2016, 120 (51): 10150-10159.

    [21] Richters S, Herrmann H, Berndt T. Highly oxidized RO2 radicals and consecutive products from the ozonolysis of three sesquiterpenes[J]. Environmental Science and Technology, 2016, 50 (5): 2354-2362.

    [22] Richters S, Herrmann H, Berndt T. Different pathways of the formation of highly oxidized multifunctional organic compounds (HOMs) from the gas-phase ozonolysis of β-caryophyllene[J]. Atmospheric Chemistry and Physics, 2016, 16 (15): 9831-9845.

    [23] Yan C, Nie W, ijl M, et al. Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization[J]. Atmospheric Chemistry and Physics, 2016, 16 (19): 12715-12731.

    [24] Wang S, Wu R, Berndt T, et al. Formation of highly oxidized radicals and multifunctional products from the atmospheric oxidation of alkylbenzenes[J]. Environmental Science and Technology, 2017, 51 (15): 8442-8449.

    [25] Molteni U, Bianchi F, Klein F, et al. Formation of highly oxygenated organic molecules from aromatic compounds[J]. Atmospheric Chemistry and Physics, 2018, 18 (3): 1909-1921.

    [26] Riva M, Rantala P, Krechmer J E, et al. Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species[J]. Atmospheric Measurement Techniques, 2019, 12: 2403-2421.

    [27] Kürten A, Rondo L, Ehrhart S, et al. Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid[J]. Journal of Physical Chemistry A, 2012, 116 (24): 6375-6386.

    [28] Heinritzi M, Simon M, Steiner G, et al. Characterization of the mass-dependent transmission efficiency of a CIMS[J]. Atmospheric Measurement Techniques, 2016, 9 (4): 1449-1460.

    [29] Lu Y, Yan C, Fu Y, et al. A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing[J]. Atmospheric Chemistry and Physics, 2019, 19 (3): 1971-1983.

    [30] Donahue N M, Epstein S A, Pandis S N, et al. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics[J]. Atmospheric Chemistry and Physics, 2011, 11 (7): 3303-3318.

    [31] Donahue N M, Kroll J H, Pandis S N, et al. A two-dimensional volatility basis set-Part 2: Diagnostics of organic-aerosol evolution[J]. Atmospheric Chemistry and Physics, 2012, 12 (2): 615-634.

    [32] Trump E R, Donahue N M. Oligomer formation within secondary organic aerosols: Equilibrium and dynamic considerations[J]. Atmospheric Chemistry and Physics, 2014, 14 (7): 3691-3701.

    LU Yiqun, YANG Gan, LIU Yiliang, WANG Yuwei, WANG Lin. Quantitative Measurement of Highly Oxygenated Organic Molecules in Urban Beijing[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 461
    Download Citation